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SDOF systems: fundamentals
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Given the mass m, stiffness k, damping c, and the
excitation force p(t) or ground acceleration i (D)
a fundamental problem in structural dynamics is
to determine the deformation response u(t) of the
1dealized one-story structure.

Other response quantities of interest such as base
shear, can subsequently de determined from the
deformation response

We will examine the response of the SDOF
system in free vibration, to harmonic forces and to
ground motion



Dynamics of SDOF systems
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deformation relation velocity relation

f,=ku f,= mu t,=cu

Equation of motion

mu + cu + ku = p(t)



Free vibration response: undamped structures
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Free vibration response: natural period

Natural circular frequency of vibration ¢ (rad / sec)

Natural period of vibration T (sec) T = 2_777

Natural frequency of vibration f (HZ) f - % n %

The term natural 1s used to emphasize the fact
that these are natural properties of the structure

The free vibration properties only depend on the
mass and the stiffness of the structure



Free vibration response: damped structures
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Free vibration response: damped structures
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where Ujand flo are initial displacement and
velocity of the SDOF system

@ is the angular phase shift
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Response to harmonic exitation

ii(t) + 2Ewu(t) + w u(t) = Esm w,t

u(t) = Ae™ “" cos(wyt—0) + Ru, sin(w,t—0,)

Free vibration transient motion Steady state motion
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Response to harmonic exitation
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Response to harmonic exitation

For small values of § the maximum displacement is controlled by
the stiffness of the system with little effect of mass or damping.

For B clos to 1, the response factor is about R=1/2E&, that is the
response factor is inversely proportional to the damping ratio,
with negligible influence of mass or stiffness.

The response factor 1is essentially independent of damping and
approaches to zero as the forcing frequency w, becomes much
higher than the natural frequency w of the structure.

It can be shown that at high forcing frequencies the maximum
displacement depends primarily on the mass.
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T‘ l"g (t) Equation of dynamic

equilibrium
Total displacement 1 .

U.t= ug+u fI+ fD+ fS=O



Equivalence between ground motion and effective force

-m u,(t)
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f,=mu fI—m(ug+ u)

Equation of motion

mu +cu+ku=-mu,(t)



Response to earthquake ground motion

ti(t) + 2Ewu(t) + w’u(t) = —i (D

The solution leads to the deformation response u(t) which
depends on the characteristics of ground acceleration U (t), the
natural circular frequency of vibration w=(k/m)!? (or
equivalently the natural period of vibration T) of the structure
and the damping ratio § of the structure.

Earthquake ground accelerations vary irregularly to such an
extent that analytical evaluation of this integral must be ruled out.



Let us assume that the irregular ground acceleration 1s made up
of very brief impulses. The vibration caused by
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T .(|i J<_ tt —»| Where u, is the initial velocity.

The earthquake accelerogram 1s digitized and appropriately filtered
to control accelerogram errors and baseline distortion.

For instance, the accelerogram could be defined at 0.02 second time
intervals. With the ground acceleration defined in this manner the
response history could be determined by numerical evaluation of
the Duhamel integral.



It should be noted that the small changes in velocity and displacement occurring during the time
interval dt will make a negligible contribution to the change in momentum. The change in

velocity during the interval is

du(t) =-u (7)dt (3.13)
Thus, the change in displacement at time, 7 caused by the impulse at T is given by
du(t) = —ii (7)dT h(t -7) -

Each impulse in Figure (3.3) will produce a vibration of this form. Because the system is linear,
the effect of each impulse is independent of every other impulse and the total resulting motion

can be obtained by the principle of super position.
t o0
u(t) = —fo llg(‘L') h(t-t)dt (3.15)

This integral is known as convolution or Duhamel integral. Explicit solution may be obtained

for simple forms of forcing function such as rectangular and triangular.



