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SDOF	systems:	fundamentals	



Problem statement 

Given the mass m, stiffness k, damping c, and the 
excitation force p(t)  or ground acceleration           
a  fundamental problem in structural dynamics is 
to determine the deformation response  u(t) of the 
idealized one-story structure.  
 
Other response quantities of interest such as base 
shear, can subsequently de determined from the 
deformation response 
 
We will examine the response of the SDOF 
system in free vibration, to harmonic forces and to 
ground motion 

!!ug(t)



																					  Dynamics of SDOF systems 
	
	
	
	
	
	
	
	
	
	
	

fI + fD + fS = p(t) 



Elastic force-
deformation relation 

Damping force-
velocity relation 

u

fD = c!ufI = m!!u

m!!u + c!u + ku = p(t)

Inertia force 

Equation of motion 

fS= ku



Free vibration response: undamped structures 

!!u(t) +ω 2u(t) = 0,      ω= k
m

u(t) = !u0

ω
sin ωt + u0cos ωt

Equation of motion in canonic form Explicit solution 



T = 2π
ω

Natural period of vibration 

Natural circular frequency of vibration  ω  (rad / sec)

T (sec)

Natural frequency of vibration  f  (Hz) f  = 1
T = ω

2π
The term natural is used to emphasize the fact 
that these are natural properties of the structure 

The free vibration properties only depend on the 
mass and the stiffness of the structure 

ω  = k
m

Free vibration response: natural period 



Free vibration response: damped structures 

ωD =ω 1−ξ 2

TD = T
1−ξ 2

!!u+ 2ξω !u+ω 2u = 0

Damping ratio:   ξ = c
2mω = c

2 km



where      and       are initial displacement and 
velocity of the SDOF system  

u0 !u0

Free vibration response: damped structures 

u(t) = e−ξ  ω  t u0 cosωDt + ξω
ωD

sinωDt
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ωD =ω 1−ξ 2

= Ae−ξ  ω  t cos(ωDt −θ )

is the angular phase shift θ



Response to harmonic exitation 

R = umax

ust

!!u(t) + 2ξω !u(t) + ω 2u(t) = p0
m sinωf t

Free vibration transient motion Steady state motion 

Response factor 

u(t) = Ae−ξ  ω  t cos(ωDt −θ ) +  Rust sin(ωf t −θf )



Response to harmonic exitation 

β =
ωf
ω

R = umax

ust
β =

ωf
ω

ust =
p0
k

R = umax

ust
Response factor 

R = 1
(1−β 2 )2 + (2ξβ)2

Angular phase shift 

θf = tan
−1 2ξβ
1−β 2
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(dynamic to static response 
amplitude) 



Response to harmonic exitation 

For small values of β the maximum displacement is controlled by 
the stiffness of the system with little effect of mass or damping. 
 
For β clos to 1, the response factor is about R=1/2ξ, that is the 
response factor is inversely proportional to the damping ratio, 
with negligible influence of mass or stiffness. 
 
The response factor is essentially independent of damping and 
approaches to zero as the forcing frequency ωf becomes much 
higher than the natural frequency ω of the structure.  
 
It can be shown that at high forcing frequencies the maximum 
displacement depends primarily on the mass. 
 



																		     Earthquake ground motion 
	
	
	
	
	
	
	
	
	
	
	
	

ut = ug + u fI + fD + fS= 0

Equation of dynamic 
equilibrium 

Total displacement 



fI = m !!ut fI = m !!ug+ !!u( )
Equation of motion 

m!!u + c!u + ku = - m !!ug (t)

Equivalence between ground motion and effective force  
	
	
	
	
	
	
	
	
	
	
	

−m !!ug (t)



Response to earthquake ground motion 

The solution leads to the deformation response u(t) which 
depends on the characteristics of ground acceleration    (t), the 
natural circular frequency of vibration ω=(k/m)1/2 (or 
equivalently the natural period of vibration T) of the structure  
and the damping ratio ξ of the structure.  
 
 
Earthquake ground accelerations vary irregularly to such an 
extent that analytical evaluation of this integral must be ruled out.  
 

!!u(t) + 2ξω !u(t) + ω 2u(t) = −!!ug (t)

!!ug



Let us assume that the irregular ground acceleration is made up 
of very brief impulses. The vibration caused by   
 

h(t) = e
−ξ  ω  t 

ωD
sinωDt

u(t) = !u0 h(t)

Where       is the initial velocity.   
 

!u0 

The earthquake accelerogram is digitized and appropriately filtered 
to control accelerogram errors and baseline distortion. 
For instance, the accelerogram could be defined at 0.02 second time 
intervals. With the ground acceleration defined in this manner the 
response history could be determined by numerical evaluation of 
the Duhamel integral.  
 



d!u(t) = −!!ug (τ )dτ

du(t) = −!!ug (τ )dτ  h(t -τ )

u(t) = − !!ug (τ ) h(t -τ )dτ
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