
 

Roma Tre University 
Department of Structures 

 
Scuola Dottorale in Ingegneria /  

Ph.D. School of Engineering 
 

Sezione di Scienze dell’Ingegneria Civile /  
Section of Civil Engineering 

 
XXIII Ciclo / XXIII Cycle 

 
 
 
 
 
 

Tesi di Dottorato / Doctoral Thesis 
 

Load-carrying capability and seismic 
assessment of masonry bridges 

 
 

 

 

 

 

Dottorando / Ph.D. Student: Stefano De Santis 

Docente guida / Tutor: Prof. Gianmarco de Felice 

Coordinatore del dottorato / Ph.D. Coordinator: Prof. Leopoldo Franco 

 

Rome, February 2011 



 

THE PRESENT DOCTORAL THESIS HAS RECEIVED A SPECIAL MENTION IN 
THE FINAL JUDGEMENT OF THE JURY OF THE EDOARDO BENVENUTO 
PRIZE (10TH EDITION, YEAR 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Collana delle tesi di Dottorato di Ricerca 
in Scienze dell’Ingegneria Civile 
Università degli Studi Roma Tre 
Tesi n° 27 

 



 

 

 

 

 

 

 
I wish to dedicate this Thesis to my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
 



  v 

Stefano De Santis 

Abstract 

The present work contributes to the knowledge of the structural behaviour 
of masonry bridges and proposes a modelling approach for their assessment 
under exercise loads and seismic actions. As a first step, an experimental 
investigation on brickwork specimens is carried out to define the material 
properties; the tests are performed under cyclic centred and eccentric 
compression with displacement control. Secondly, a fiber beam model is used 
to simulate eccentric compression experiments: the fiber constitutive relation 
is determined and calibrated according to centred tests and the feasibility in 
predicting the cross-section response of brick arches and piers under axial 
load and bending moment is demonstrated. The simplicity of a 1-D model, 
combined with its accuracy in taking into account the mechanical properties 
of the material, makes it suitable for the structural analysis of masonry 
bridges. Then, a representative sample of existing large-span rail viaducts is 
considered, for which the load-carrying capability under travelling load is 
estimated. Numerical simulations highlight the effect of the constitutive 
assumptions on the overall resistance estimate and the reliability of yield 
design-based approaches; the safety level and expected damage under 
exercise load are also provided. Finally, the dynamic behaviour of masonry 
bridges is examined starting from the response of a single arch to base 
impulse acceleration and earthquake motion, considering the influence of 
arch geometry and material properties. The safety of a multi-span viaduct 
towards different earthquake scenarios is then assessed by means of push-
over analyses and non-linear dynamic simulations under sets of suitable 
natural accelerograms. The reliability of earthquake engineering conventional 
procedures, based on non-linear static methods, is evaluated when applied to 
masonry bridges and a framework for performance-based seismic assessment 
is outlined. 

 
Keywords: Experimental investigation; Historic brickwork; Masonry 

bridges; Load-carrying capability; Seismic assessment. 
 



vi   

Roma Tre University - DiS 

Sommario 

Il lavoro fornisce un contributo alla conoscenza dei ponti in muratura, per 
i quali viene sviluppato un approccio per la valutazione della sicurezza 
rispetto ai carichi di esercizio e all’azione sismica. In prima battuta vengono 
determinate le caratteristiche della muratura attraverso una campagna 
sperimentale con prove cicliche di compressione, condotte con carico 
centrato ed eccentrico in controllo di spostamento. Le prove di 
pressoflessione sono poi simulate utilizzando un modello di trave con sezione 
a fibre, da adottare per la rappresentazione del comportamento di archi e pile, 
in cui la relazione costitutiva della fibra è calibrata sulla base delle prove 
centrate. Il confronto con la sperimentazione dimostra l’attendibilità 
dell’approccio proposto e, d’altra parte, la semplicità di un modello 
monodimensionale, unita alla sua accuratezza nel tenere conto delle proprietà 
meccaniche del materiale, lo rende adatto per l’analisi strutturale dei ponti in 
muratura. Successivamente, viene preso in esame un insieme di dodici 
viadotti ferroviari esistenti di grande luce, per i quali si valuta la capacità 
portante al variare delle ipotesi costitutive adottate, verificando l’attendibilità 
di approcci basati sull’analisi limite e stimando il livello di sicurezza e di 
sollecitazione in condizioni di esercizio. Infine, viene analizzato il 
comportamento dinamico dei ponti in muratura studiando innanzitutto la 
risposta di un singolo arco ad azioni impulsive e sismiche e valutando 
successivamente il comportaemento sismico di ponti a più arcate attraverso 
analisi di push-over e analisi dinamiche non lineari con accelerogrammi 
naturali. Il confronto tra le diverse simulazioni per un caso di studio consente 
di mettere a fuoco alcune problematiche legate all’applicazione ai ponti in 
muratura delle metodologie attualmente impiegate per la verifica delle 
costruzioni in zona sismica basate su metodi statici non lineari e di 
evidenziare i criteri di base per l’impostazione di una procedura di 
valutazione della sicurezza nei confronti del terremoto su base prestazionale.  

 
Parole chiave: Indagine sperimentale; Muratura storica; Ponti in muratura; 

Capacità portante; Sicurezza sismica. 
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1. Introduction 

1.1. Motivation and aims 

The infrastructural networks of several Countries all over the world 
present a rich heritage of masonry bridges, spacing from small single-span 
overpasses to large multi-span viaducts. Most of the thousands of Italian 
masonry bridges belonging to rail and road lines are almost coeval, being 
built in the second half of XIX Century and in the very first years of XX 
Century. They show comparable geometries, materials, building techniques 
and design criteria, diffused all over the national territory after the unification 
of Italy. Thus, analogous features and issues often recur.   

Historic bridges constitute a precious cultural heritage and evidence of the 
past, and specialized analysis and intervention methodologies are needed to 
ensure their safety level. Indeed, the activities of knowledge and valorization, 
conservation and assessment, inspection and diagnosis, repair, strengthening 
and retrofitting of existing bridges have recently experienced a wider and 
wider interest.  

The design rules adopted in the past for the construction of masonry 
arches and multi-span bridges were based on empirical criteria or graphical 
methods. The expected traffic loads were lower than the actual ones and the 
seismic action was not explicitly included in the calculations; moreover, 
material degradation processes, foundation settlements, structural damages, 
transformations or partial demolitions could have occurred with the passing 
of time. Anyway, masonry bridges generally show an extremely long life 
and, thanks to the large self-weight, high strength and stiffness under exercise 
conditions. At present time, an accurate assessment towards both traffic and 
earthquake loads is needed according to the safety standard requested by 
actual codes. Nevertheless, no detailed instructions are provided by guide-
lines and technical regulations to professional engineers for the structural 
analysis and reliability evaluation.  

Despite their importance, a deep awareness of the real safety level offered 
by existing masonry bridges is still lacking and a lot of work has still to be 
done by the scientific community to better understand their structural 
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behaviour; several issues, such as for example the seismic response, even 
seem to be almost unexplored. Researchers have now to face the challenge of 
developing tools and procedures to carry out analysis, perform reliability 
assessment and design interventions that offer a satisfactory compromise 
between accuracy and simplicity.  

A well-founded structural model has to include, among the other things, 
an accurate description of the material properties and of the effect induced by 
the interaction between structural elements on the whole response. Moreover, 
an adequate representation of the external actions has to be provided. At the 
same time, computational sustainability and robustness, as well as clearness 
and simplicity in the determination of the parameters, have to be ensured, 
since the professional utilization asks for low modelling and calculus time, 
and comprehensible, verifiable and, of course, reliable results. 

Several alternative approaches are available nowadays for the structural 
analysis of masonry bridges. Limit analysis-based methods start from the 
simplifying assumptions proposed by Heyman (1966; 1982) that brickwork 
in compression is infinitely resistant or has finite strength with unlimited 
ductility, that it has no tensile resistance, and, finally, that no sliding between 
voussoirs occurs. They are widely used (see, among others: Harvey, 1988; 
Harvey and Smith, 1991; Gilbert and Melbourne, 1994; Clemente et al., 
1995; Boothby, 1997; Gilbert, 2007; Clemente, 2010) but may lead to an 
overestimate of the effective strength. Otherwise, applications of incremental 
finite element analysis have been proposed, making use of 1-D (Molins and 
Roca, 1998; Boothby, 2001; Brencich and De Francesco, 2004a; 2004b; 
Brencich et al., 2004; de Felice, 2009), 2-D elements (Cavicchi and 
Gambarotta, 2005; 2007; Gilbert et al., 2007a) and 3-D elements (Fanning 
and Boothby, 2001; Fanning et al., 2005; Harvey et al., 2005; Domède and 
Sellier, 2010). As an alternative, expeditious empirical methodologies have 
been developed providing a quick estimate of the safety level of a bridge, 
such as the MEXE Method (UK Department of Transport, 1997; Wang et al., 
2010) and the SMART Method (Melbourne et al., 2007). 

In dynamics, static equivalent analyses based on the mechanism method 
are typically performed (Oppenheim, 1992; Clemente, 1998; De Luca et al., 
2004; De Lorenzis et al., 2007), but the effective reliability of these 
approaches has still to be wholly verified. On the other hand, 3-D elasto-
plastic finite elements (Pelà et al., 2009) and 1-D non-linear macro-elements 
(Resemini and Lagomarsino, 2007) have also been used. Finally, reliable 
assessment criteria towards earthquakes are lacking and should be included in 
a general performance-based approach. 

 
The research work presented in this Thesis aims at giving a contribution in 

the field of the structural analysis of existing masonry bridges, facing some 
of the most important features of this complex issue; in detail the main 
purposes are: 
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− giving a contribution to the knowledge of existing masonry bridges, 
starting from the mechanical properties of adopted materials; 

− deeply understand some issues of the response of historic brickwork, 
such as the characteristics of the components (mortar and bricks), the 
behaviour under cyclic centered and eccentric loading, the cross-
section deformation;  

− developing an approach for the structural modelling based on beam 
elements with fiber cross-section that offers a good compromise 
between accuracy (which results from an adequate description of the 
material properties experimentally derived) and simplicity, and is 
therefore suitable for a practical use; 

− deepening some features of the evaluation of the safety level offered 
by existing masonry bridges under exercise conditions, such as the 
effect of the material characteristics on the whole load-carrying 
capability, the feasibility of yield design-based approaches, the load 
models to adopt, the response of different bridge typologies in terms of 
resistance, expected damage, collapse mechanisms; 

− facing the issue of the seismic response, starting from the identification 
of advantages and limits of available methodologies, based on non-
linear static analysis methods and conceived for the design of r.c. and 
steel buildings; 

− discussing the criteria and the procedures needing wariness in modal, 
non-linear static, and incremental non-linear dynamic analyses, such as 
the interpretation of modal frequencies and shapes; the load 
distribution to adopt within push-over methods, and, finally, the 
definition of damping parameters and the selection and manipulation 
of accelerograms within time-step integration simulations;  

− outlining a first proposal of a performance-based seismic assessment 
methodology. 

1.2. Organization of the Thesis 

The Thesis is organized as follows. In Chapter 2 the results of an 
experimental campaign carried out on brick, mortar and masonry specimens, 
representative of Italian rail bridges, is presented. Monotonic and cyclic 
displacement-controlled tests, as well as three-point bending tests, are carried 
out on cubic and prismatic samples to determine the main mechanical 
properties of brick and mortar, then used to build brickwork prisms. The 
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mechanical response of historic brick masonry (resistance, stiffness, cyclic 
and softening behaviour) in terms of Force-Displacement and Moment-
Curvature relations are derived on the base of cyclic centered and eccentric 
compression tests. The results are reported and discussed, together with the 
observed damage evolution. The cross-section behaviour of a brickwork 
element under compression and bending is examined, and a criterion for the 
estimate of the maximum load and an analytical estimate of the response after 
several load cycles are proposed. 

In Chapter 3 the fiber beam element is presented and the possibility of 
using it to represent vaults and piers of masonry bridges is investigated. Two 
constitutive relations are defined, implemented and calibrated on the base of 
experimental results with the purpose of representing the global effective 
behaviour of historic brickwork under cyclic eccentric compression. Tests 
under axial force and bending moment are then simulated and numerical 
predictions are compared with experimental data in terms of strength domain 
and peak values, as well as of whole response curve. 

In Chapter 4 the modelling of masonry bridges is described and applied to 
some case studies. First of all, a laboratory test carried out on a three-span 
large scale specimen in Bolton Institute (Melbourne et al., 1997) is simulated 
to validate the proposed approach. Two Italian historic multi-span viaducts 
are modelled and their load-carrying capability is evaluated under travelling 
load. The agreement between the results provided by the fiber beam 
simulations and limit analysis under the same constitutive assumptions is 
checked. The effective material properties are then taken into account and the 
effect of the constitutive law on overall resistance and collapse mechanism 
are discussed to establish to what extent the results of a yield design-based 
approach are reliable. Finally, the safety level offered by a wider sample of 
Italian large-span rail bridges is assessed under exercise conditions. 

In Chapter 5 the seismic assessment is treated. First of all, the problem of 
a single arch under impulse base motion is considered: numerical simulations 
are compared to the solution provided by the mechanism method to validate 
the fiber beam-based approach in dynamics; size and slenderness effects on 
the resistance, as well as the influence of the material properties, are also 
investigated. Then the response of the arch under earthquake motion is 
investigated, and modal, push-over and dynamic analyses are performed. The 
main features of the analysis methods for the seismic assessment are 
presented and discussed, underlining some issues related to their application 
to masonry bridges: push-over analyses (distribution of horizontal loads, 
cyclic response), non-linear dynamic simulations (viscous damping, selection 
and scaling of records, choice of the structural state variables), earthquake 
engineering conventional procedures (reliability of push-over analysis-based 
methods). An existing viaduct is then analyzed: its natural frequencies and 
modal shapes are compared to the ones provided by an elastic model built 
with 3-D finite elements and then push-over analyses and incremental non-
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linear dynamic analyses under suitable natural accelerograms are performed; 
the N2 method is also applied for the evaluation of the seismic safety level. 
Finally, some basic concepts of a framework for the performance-based 
seismic assessment are proposed. 

In Chapter 6 the conclusions of the Thesis and the basis for future 
developments are illustrated. 
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2. Experimental investigation on 
historic brickwork 

2.1. State-of-the-art 

Masonry vaults, arches, pillars and walls may experiment similar load 
conditions characterized by a concentration of compressive stress due to the 
eccentricity of the axial load acting on the cross-section. The collapse of 
these structural elements may be induced by loss of equilibrium as well as by 
crushing failure of the material; anyway, the compressive strength is not the 
only significant parameter, since the structural response to a cyclic loading 
history (such as traffic loads or seismic actions) is strongly influenced by the 
stiffness, and the post-peak, cyclic and hysteretic behaviour. For this reason, 
the investigation of the material mechanical properties is a primary issue for 
the structural assessment of masonry constructions.   

The behaviour of brick masonry subjected to centered and eccentric axial 
load has been widely investigated over a long period of time. The first works 
date back to the Seventies and the Eighties. In (Francis et al., 1971; Shrive, 
1985; McNary and Abrams, 1985; Page, 1981; 1983; Shubert, 1988) the 
parameters influencing the compressive strength and the stiffness of 
brickwork (such as the lateral strength of the units, and the lateral 
deformation mismatch between units and mortar) were studied. 

In the last twenty years several works have been devoted to the 
experimental testing on masonry. An extensive campaign carried out to 
characterize the mechanical response of brick masonry under compression 
along both material directions, as well as in tension along horizontal mortar 
joint direction, is presented in (Olivito and Stumpo, 2001). Similar 
experimental tests have been carried out to investigate the compressive 
strength and the failure mechanism of brickwork loaded parallel to the bed 
joints in (Hoffman and Schubert, 1994). The influence of test sample 
geometry, including the presence of mortar head joints, on the compressive 
strength has been investigated in (Mann and Betzler, 1994). The bond effect 
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on the response under compression has been studied also in (Vermeltfoort, 
1994).  

Again speaking of monotonic axial loading, in (Ewing and Kowalsky, 
2004) an experimental campaign on unconfined and confined clay brick 
masonry prisms leads to the identification of the parameters of one of the first 
constitutive models for masonry to predict the experimental response. In 
(Oliveira et al., 2006) an experimental campaign on masonry under pure 
compression is presented, in which tests are carried out on both stone and 
brickwork masonry specimens, as well as on their components (sandstone 
and clay bricks); the main properties (strength, stiffness, brittleness, energy 
dissipation, degradation) are achieved from displacement controlled 
monotonic and cyclic tests. 

The cyclic behaviour of masonry under axial load has been investigated in 
(Roberts et al., 2006) and in (AlShebany and Sinha, 1999); in the latter paper 
an analytical macroscopic constitutive relation (named stability curve) is 
proposed to describe the response after several unloading-reloading cycles. In 
(Tomor and Wang, 2010) the deterioration process of masonry under fatigue 
loading is investigated with the help of acoustic emission technique, and the 
fatigue strength is assessed. 

The condition of combined axial load and bending moment is investigated 
by several authors, starting from (Drysdale and Hamid, 1982) and (Ding, 
1997). A wide experimental campaign is described in (Brencich and 
Gambarotta, 2005), (Brencich et al., 2002) and (Brencich et al., 2006) in 
which the tests are carried out on clay brick masonry specimens, as well as 
on their components; crack pattern evolution, acoustic emissions and cross-
section deformation are monitored; moreover, experimental data are 
compared with the predictions of a 3-D finite element model. Finally, in 
(Cavalieri et al., 2005) an analytical law for masonry in compression is 
defined on the base of centered and eccentric tests and is used to predict 
experimental response curves and strength properties. 

Having in mind the effective loads experimented by masonry elements, 
and aiming at reproducing in the laboratory similar stress conditions, other 
combined actions have been investigated in addition to the eccentric axial 
load. Among others, in (Mojsilović and Marti, 1997) brickwork walls have 
been subjected to in-plane and out-of-plane loads, in (Mojsilović, 2005) and 
in (Mojsilović and Marti, 2002) shear and normal forces have been 
considered, and, finally, in (Litewka and Szojda, 2006) the collapse under 
triaxial state of stress has been investigated. 

Although several studies have been carried out to experimentally 
determine its mechanical response, most contributions deal with 
contemporary, rather than historic, masonry. Apart from some studies on the 
behaviour of old brickwork under compression (Venu Madhava Rao et al., 
1997; Aprile et al., 2001, de Felice and Carbone, 2006), or under overload 
phenomena (Anziani et al., 2000), with a view towards strengthening 
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techniques, such as in (Valluzzi et al., 2005), only a few papers have been 
devoted to historic masonry, which, however, may behave completely 
differently from contemporary one, due to both brick and mortar properties 
(Brencich and de Felice, 2009), as well as to the material degradation. The 
latter paper presents three different experimental campaigns carried out on 
historic brickwork elements under centered and eccentric compression; the 
limit domains gathered from laboratory data are estimated by means of a 1-D 
model and its reliability is investigated with the change in the global 
constitutive law (perfectly brittle, elasto-plastic, Kent&Park relation) as well 
as of the available ductility. 

Regarding the materials used in the construction of old masonry bridges, 
some data on the mechanical properties of bricks and mortar may be found in 
historic treatises, like (Rondelet, 1802; Curioni, 1874; Séjourné, 1913; Gay, 
1924); more recent experimental results can be found in (Barbi et al., 2002), 
where the behaviour of historic bricks under compression is presented, in 
(Sala et al., 2008) where the mechanical properties of lime mortar enriched 
with natural pozzolana are derived from experimental tests, and, finally, in 
(Binda et al., 1988), where the influence of mortar types on the compressive 
strength of masonry is underlined. In some cases, laboratory tests are 
performed on extracted samples from historic constructions in order to 
characterize chemical, physical and mechanical characteristics of original 
materials (Baronio et al., 2003), as well as on new materials, to be adopted 
for the repair or reconstruction of damaged buildings, to investigate their 
compatibility with historic ones (Binda et al., 2003). 

 
In this chapter, an experimental campaign on historic brick masonry is 

presented, directed to assess the mechanical properties of the brickwork used 
in rail arch bridges built in Italy at the end of XIX Century. The starting point 
is the consideration that the behaviour of masonry under compression plays a 
non-negligible role in the bridge load-carrying and seismic capacity. In fact, 
the structural response, when close to failure, may widely change depending 
on the effective material properties (Brencich and De Francesco, 2004a; 
2004b); for instance, the classical four-hinge mechanism takes place only 
when masonry exhibits an adequate ductility capacity; otherwise, failure is 
reached with crushing within the critical cross-section (de Felice, 2007; 
2009). Moreover, the post peak behaviour was quite recently discovered to 
play a crucial role in the inelastic response of masonry (Lourenço, 1998). 

With this in mind, some viaducts built between 1890 and 1894 along the 
rail line between Rome and Viterbo have been surveyed and the masonry 
properties assessed, to reproduce in the laboratory specimens having 
characteristics similar to the brickwork used in the bridges.  

The significance of this experimental campaign and the scientific 
contribute represented by its results arise from the consideration that most of 
the rail Italian masonry bridges were built in a relatively short period of time 
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(mainly, in the second half of the XIX Century), using almost everywhere the 
same materials and with similar construction rules (Brencich and Morbiducci, 
2007). This is the reason why bridges with comparable overall dimension, 
material properties and structural details may be found, without distinction, in 
different regions. Their structural assessment has to start from the knowledge 
of the effective properties of the brickwork they are made of. 

2.2. Experimental set-up 

The whole experimental investigation presented in this work is carried out 
in the Experimental Laboratory of the Department of Structures of University 
Roma Tre. The tests are made using an MTS hydraulic load frame (Figure 
2.1) with 500kN load rating; most of the experiments are displacement 
controlled, with a velocity of displacement of the load plates equal to 
0.01mm/sec, while when the control is made on the load the rate of 
application of the force is equal to 50N/sec, as suggested by the European 
Standards (UNI EN 772-1). The acquisition frequency is always equal to 
10Hz.  

In the unloading branches of the displacement controlled cyclic tests, a 
testing procedure is implemented ad hoc, provided with a minimum load 
threshold to avoid the complete unloading of the specimen. 

Except for the applied load data, directly acquired by the load cell 
integrated in the MTS testing machine, displacements and strains are 
acquired by linear potentiometers and resistive strain-gauges, and collected 
by a National Instruments NI PCI 6281 Multifunction Data Acquisition 
(DAQ) system. It is provided with 3 units NI SCXI 1520 Universal Strain-
Gauge Input Module, with 8 Channels each; the acquisition software is 
developed in LabView environment. 
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Figure 2.1. MTS testing machine (left) and detail of the oil control device 
(right, up) and of the data acquisition device (right, bottom). 

2.3. Masonry components 

Before testing masonry specimens, the mechanical properties of bricks 
and mortar used for their construction are investigated; monotonic and cyclic 
compression tests and three-point bending tests are performed to determine 
the compressive and tensile strength of the materials together with the 
correspondent strain values, their stiffness, and, thanks to the displacement 
control, their whole response curve, including the post-peak softening phase 
and the unloading-reloading cycles. 

This first part of the experimental campaign leads to a deeper knowledge 
of the mechanical behaviour of historic materials, whose response shows 
some important differences if compared with those in use nowadays, and to 
useful information for the interpretation of the response of brickwork 
specimens. 
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2.3.1. Bricks 

In the construction of the bridge vaults of the rail line built between 1890 
and 1894 from Rome to Viterbo, clay bricks were used also called original 
bricks hereafter; they measure 270×130×55mm3. In order to determine their 
mechanical properties, 20 cubic samples with side 45÷50mm are extracted 
from 6 bricks and submitted to monotonic and cyclic compression tests. The 
experiments are performed in direction normal to the face of the bed joints, 
which are previously carefully leveled by means of a grinding machine 
(Figure 2.2) in order to guarantee the parallelism of the loaded surfaces and 
avoid initial stress concentrations. No devices are employed to reduce the 
friction between the specimen surface and the plates of the load frame. 

For the purpose of reproducing masonry specimens to be tested in the 
laboratory, a stock of old clay bricks (also called historic bricks hereafter) 
with the same characteristics and dimensions as the original samples is 
found; the bricks were produced at the beginning of the XX Century in a 
clink situated in Monterotondo, not far from the bridge locations. Their 
mechanical properties are determined by testing 11 cubic specimens of 
approximately 48mm side, extracted from 6 bricks. 

  

Figure 2.2. Cutting machine (right) and grinding machine (left). 

The stress-strain curves are reported in Figures 2.3 and 2.4 for original 
and historic bricks, respectively: both brick stocks show very similar 
properties in terms of strength and post-peak behaviour, with a slightly higher 
stiffness of old bricks. 

The maximum stress is approximately 30MPa, and the correspondent 
strain is in the order of 1%. Looking at the response curves, an apparent 
stiffness increase is observed in the first branch, resulting from the bedding 
effect induced by the asperities and the unavoidable non-perfect parallelism 
of the loaded surfaces; however, a linear branch can be clearly identified 
from the end of this bedding phase until about 70% of the maximum load; the 
elastic stiffness is estimated by a linear interpolation of this linear branch, 
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giving an average value of about 3100MPa and 3900MPa for original and 
historic bricks, respectively. 
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Figure 2.3. Experimental stress-strain curves of monotonic (left) and cyclic 
(right) compression tests on original brick cubic samples belonging to the 

masonry arch bridges of Rome-Viterbo rail line. 
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Figure 2.4. Experimental stress-strain curves of monotonic (left) and cyclic 
(right) compression tests on historic brick cubic samples (bricks manifactured 

in Monterotondo clink). 

Both the stocks of bricks behave comparably under cyclic loading, 
showing a good capability in sustaining loading-unloading cycles even when 
they are performed in the softening branch, without appreciable stiffness 
degradation in spite of the high level of deformation and damage reached.  
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Figure 2.5 shows the evolution of damage during a compression test on a 
brick sample: the first cracks occur at about 75%÷85% of the maximum load, 
together with the expulsion of fragments from the corners; at peak load the 
cracks involve the whole height of the specimen and then increase in size and 
number during the softening phase, inducing a progressive lateral dilatation; 
finally, under very high strains, slices or scraps are discharged from one or 
more lateral faces.  

  

  

Figure 2.5. Failure pattern of an cubic brick sample during a compression test. 

The tensile strength of historic bricks is indirectly estimated throughout 14 
three point bending tests (3PBT), carried out on two different prismatic 
specimen types (having dimensions 100×40×40mm3 and 160×40×40mm3), 
extracted from 5 bricks. The test set-up consists of two steel bars with 
diameter =10mm and 100mm far from each other, on which the specimen 
is placed, and a third bar (identical to the other ones) by means of which the 
load is applied in the center section. The device to perform the tests is 
designed on purpose (Figure 2.6) to be used with the MTS testing machine 
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(Figure 2.7). The tests are load controlled with 50N/sec loading rate, in 
agreement with the UNI 8943-3 Standard. 

   
Figure 2.6. Testing device for three-point bending test. 

0 0.05 0.1 0.15 0.20

1000

2000

3000

4000

5000

6000

Displacement [mm]

Fo
rc

e 
[N

]

 

 

Figure 2.7. Three-point bending test on brick specimens: force-displacement 
response curves (left) and sample after the end of the test (right). 

The tensile strength can be determined from the ultimate load directly 
from Navier’s formula, giving the stress value in the intrados of the centre 
section (UNI 8943-3) starting from the force value that produces the brittle 
collapse of the specimen (Figure 2.7). Anyway, this may lead to overestimate 
the effective tensile resistance, since the horizontal forces due to the friction 
between specimen intrados and bottom steel bars result in the arising of a 
strut&tie mechanism, as can be easily identified through an elastic 3-D FE 
analysis (Figure 2.8). The lower constraints give an eccentric horizontal 
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reaction, producing a bending moment which is opposed to the one due to the 
vertical load (Figure 2.9). 

 
Figure 2.8. Elastic FE analysis of a brick sample under a three-point bending 

test: horizontal stresses indentifying the strut&tie mechanism. 

 
Figure 2.9. Additional bending moment due to specimen-steel bar friction in 

three-point bending test. 

Considering the effective stress field in the specimen, a more realistic 
estimate of the tensile strength can be achieved by expression (2.1), which 
takes into account the friction contribute and contains the friction angle (). 
The latter is experimentally determined by means of tests on reclining table 
(Figure 2.10) and, in this case, is found to be equal to 26°. 
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Figure 2.10. Experimental tests on reclining table, before (left) and after 
(right) the sliding onset. 

The value of the tensile strength is evaluated to be 3.79MPa, while the 
overestimate achieved without considering the friction contribute is 
approximately 20%.  

The average properties and the corresponding standard deviations of the 
experimental tests on both original and historic brick samples are collected in 
Table 2.1.  

 

 
Compression 

strength 
fb

c [MPa] 

Deformation at 
peak stress 

(fb) 

Tangent 
stiffness 
Eb [MPa] 

Tensile 
strength 
fb

t [MPa] 

 Original brick samples  
(compression tests: 18 samples) 

Mean value 29.85 11.110-3 3067 - 
Standard deviation 7.33 3.210-3 731 - 

 Historic brick samples  
(compression tests: 11 samples – 3PBT: 7 samples) 

Mean value 30.51 9.410-3 3918 3.79 
Standard deviation 5.24 2.110-3 395 0.24 

Table 2.1. Experimental properties of original and historic bricks. 

2.3.2. Mortar 

Some mortar original samples are taken from one bridge of Rome-Viterbo 
rail line and petrographical, microstratigraphical and microchemical analyses 
are performed on it (Figure 2.11).  

These tests aim at providing a knowledge base for the interpretation of 
building techniques and structural response (Middendorf et al., 2005), as well 
as at producing a new mortar with the same properties. 
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The original mortar is made with lime and pozzolana; the samples contain 
several grey mortar fragments, with a low cohesion level, immersed in a large 
quantity of powder coming from mortar disaggregation, and dark grey round 
pozzolana particles (probably coming from a volcanic deposit in the Sabatini 
Mountains, not far from Rome). 

The bonding element is a light grey carbonated lime, characterized by a 
homogeneous structure (few fragments can be observed); its total porosity 
(whose estimated average value is 2040%) is essentially due to the drying 
process of the lime. The aggregate is made of volcanic fragments and is 
characterized by a granulometry variable from silt to fine gravel, with 
granules of dimensions comprised between 0.01 and 4.50mm. The sorting 
ratio is very low and its distribution into the binder is homogenous; the 
granules are not oriented and from their high thickening (more than 50%) the 
estimated volumetric ratio binder/aggregate is approximately equal to 1:4. 

  

  

Figure 2.11. Extracted mortar sample (up, left) and enlargements of its bright 
section: 40× (up, right) and 100× (bottom). 

A mortar with similar characteristics is prepared in the laboratory to be 
used with the previously described bricks for building masonry specimens, to 
obtain samples that are representative of the effective brickwork of the 
bridges. Cubic and prismatic samples are realized (Figure 2.12) and tested. 
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Figure 2.12. Cubic and prismatic mortar specimens before and after the 
extraction from the formworks. 

Totally, 11 cubic mortar samples having 40mm side and 8 prismatic 
samples having 40×40mm2 base dimensions and slenderness ratio height to 
width (H/W) equal to 2 and 4, are tested under compression. The response 
curves (Figure 2.13) are characterized by an initial elastic phase, where a 
linear branch can be clearly identified; a linear regression in this interval is 
used to determine the material elastic stiffness, as already done for bricks. 
When 7080% of the maximum load is reached, a significant loss of linearity 
occurs; finally, the post-peak response is characterized by a softening branch 
with constant slope, up to the end of the test. Similarly to brick samples, 
during the tests on mortar an initial bedding phase is recognizable with an 
apparent stiffness increase, which has to be attributed to the asperities and 
non-prefect parallelism of the loaded surfaces. 

The cyclic behaviour is characterized by low energy dissipation: the 
unloading-reloading branches display high stiffness values, probably as a 
result of the material compaction. The skeleton curve can be clearly seen as 
the envelope of the cyclic ones and no significant degradation occurs in the 
continuation of the test after an unloading-reloading cycle, even if it is 
performed in the softening phase. 

The comparison between the response curves of cubic and prismatic 
samples shows the confining effect of the loading plates; in fact, the more 
slender is the specimen, the lower is the compressive strength gathered from 
the experiment, passing from 1.62MPa (cubic specimens, H/L=1) to 1.46MPa 
(H/L=2) and 1.27MPa (H/L=4) (Figure 2.13, Table 2.2); the strength 
reduction is also associated to a higher slope of the softening branch, 
indicating the dependence of confinement on ductility. Anyway, no devices 
are used to reduce this effect, also in consideration of the confinement 
induced on mortar layers by the bricks in masonry assemblages. 

As regards the crack pattern evolution, cubic specimens (Figure 2.14) 
show vertical cracks originating in the initial ascending branch when the load 
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is approximately 4050% of the maximum one, followed by the detachment 
of fragments from the external surfaces occurring in the softening phase; at 
the end of the test several cracks involve the whole specimen including the 
loaded surfaces.  
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Figure 2.13. Experimental stress-strain curves of compression tests on cubic 
(left) and prismatic (right) mortar specimens (blue curves: slenderness ratio 

H/L=2; red curves: H/L=4). 

  

Figure 2.14. Crack pattern in a compression test on a cubic sample. 

The behaviour of prismatic specimens (Figures 2.15 and 2.16) is 
characterized by the appearance of a first narrow vertical crack when the load 
is about 7080% of the peak value, becoming evident only in an advanced 
phase of the softening branch; generally, only one crack characterizes the 
failure, and smaller cracks are detected on the loaded surfaces. 
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Figure 2.15. Crack pattern in a compression test on  prismatic sample 
(slenderness ratio H/L=2). 

  

Figure 2.16. Crack pattern in a compression tests on a prismatic sample 
(slenderness ratio H/L=4). 
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Compression 

strength 
fm

c [MPa] 

Deformation at 
peak stress 

(fm) 

Tangent 
stiffness 

Em [MPa] 

 Cubic specimens 
5 samples 

Mean value 1.62 10.610-3 228.7 
Standard deviation 0.21 3.810-3 61.8 

 Prismatic specimens  
(slenderness ratio L/H = 2) –  4 samples 

Mean value 1.46 7.810-3 267.2 
Standard deviation 0.23 4.310-3 138.2 

 Prismatic specimens  
(slenderness ratio L/H = 4) –  4 samples 

Mean value 1.27 5.810-3 329.2 
Standard deviation 0.23 0.710-3 156.6 

Table 2.2. Experimental results of mortar samples under compression tests. 

The mortar tensile strength is estimated through three point bending tests, 
carried out on 5 prismatic specimens, having dimensions 40×40×160mm3, 
and an average value of 0.44MPa is found (Table 2.2); the load-displacement 
curves, showing the brittle failure observed in the tests, are plotted in Figure 
2.17. The experiments are performed in conformity with the European 
Standard UNI EN 1015-11, and making use of the same set-up (Figure 2.17) 
adopted for three point bending tests on bricks. 
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Figure 2.17. Three-point bending test on mortar specimens: force-
displacement response curves (left) and a sample immediatelty before the 

collapse (right). 
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2.4. Experimental plan for brickwork 

Aiming at investigating the mechanical response of historic brickwork 
under centered and eccentric compression, which is the stress condition 
experimented by the cross-section of vaults and piers, 19 specimens of 
various sizes and geometries (Figure 2.18) are built using the bricks and the 
mortar previously described. The arrangement of the bricks and the thickness 
of the mortar joints, as well as the bending axis, aim at reproducing a portion 
of a brick masonry arch.  

After being aged for two years, the specimens are subjected to 
displacement controlled cyclic compression tests, with different values of 
loading eccentricity ranging from 0 to 110mm (Table 2.3); the load is applied 
by means of an ad hoc arranged equipment (Figure 2.18).  

All the experiments are performed on the basis of the European Standard 
UNI EN 772-1 using the MTS hydraulic load frame and the acquisition 
devices described in paragraph 2.2. 

 
Figure 2.18. Schematic illustration of masonry specimen types and 
experimental set-up for centered and eccentric compression tests. 
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Test Specimen 
type 

Eccentricity 
e [mm] 

Number of 
specimens 

Centered cyclic 
compression 

S-C 0 2 
S-CG 0 2 

Eccentric cyclic 
compression 

S-C 30 2 
S-CG 30 2 

S-E5 

40 2 
60 2 
80 1 
100 2 

S-E9 70 2 
110 2 

Table 2.3. Experimental plan for tests on brickwork prisms.  

2.5. Brickwork under uniform compression 

Four masonry specimens are tested under cyclic centered axial load; the 
prisms measure 140×140×310mm3 and consist of five brick layers; two 
specimens (S-CG type) have a head mortar joint in the middle of the second 
and fourth layers, while the other two ones (S-C type) do not (Figure 2.18); 
both horizontal and head joints are 1012mm thick.  

A spherical articulation is used to ensure a uniform stress distribution 
between specimen and loading plates. The global displacements are acquired 
by means of four linear potentiometers (stroke 50mm, resistance 4.0 k, 
and independent linearity 0.15%), while local brick vertical and horizontal 
strains are acquired by means of two resistive strain-gauges (initial length 
30mm), which are connected to the bricks by means of an acrylic glue, 
applied on an epoxy-based resin film ensuring the regularity of the contact 
surface (Figures 2.19 and 2.20). 

The response curves are plotted in Figure 2.21 in the average stress-
average strain plane. An initial elastic phase is found, in which a linear 
behaviour is recognizable, until the load reaches 7080% of the maximum 
value; the latter is preceded by a non-linear pre-peak phase and followed by a 
substantially linear softening phase. In the very first part of the ascending 
branch, a bedding effect is made evident by an apparent stiffness increase, 
similar to the one found in compression tests on brick and mortar specimens.  
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Figure 2.19. Schematic illustration of the equipment for centered compression 

tests on brickwork. 

  

Figure 2.20. Equipment for centered compression tests on brickwork: strain-
gauges and spherical articulation (left) and position transducers (right). 

Table 2.4 lists the main properties resulting from the experiments: 
compression strength fM and corresponding strain (fM), initial tangent 
stiffness EM0, average of the stiffness values of unloading-reloading branches 
EM,u-r, and, finally, slope of the softening branch EM,s. 



 Chapter 2 51 

Stefano De Santis 

0 0.01 0.02 0.03 0.040

1

2

3

4

5

6

7

8

Average strain

A
ve

ra
ge

 s
tre

ss
 [M

P
a]

 
0 0.01 0.02 0.03 0.040

1

2

3

4

5

6

7

8

Average strain
A

ve
ra

ge
 s

tre
ss

 [M
P

a]
 

Figure 2.21. Experimental response curves of cyclic axial compression tests 
on S-C (left) and SC-G (right) type specimens. 

Specimen fM  
[MPa] (fM) EM0  

[MPa] 
 EM,u-r  
[MPa] 

EM,s  
[MPa] 

S-C1 7.43 18.110-3 662.1 3191.3 -335.5 
S-C3 7.96 17.110-3 668.3 2978.5 -351.6 

S-CG1 4.37 11.210-3 726.5 2497.0 -127.1 
S-CG3 4.12 13.110-3 585.0 2231.8 -162.8 

Table 2.4. Experimental results of masonry prisms under cyclic axial load. 

The stiffness in the reloading phases is higher than the slope of the first 
loading branch, as a result of the compaction process developing in 
horizontal mortar joints, where the inelastic strain is accumulated. The latter 
is associated to the maximum stress sustained during the loading history, as 
also pointed out in (Rosson et al., 1998). As a consequence, no variation in 
stiffness is detected in subsequent unloading-reloading cycles, while, once 
the load goes beyond the unloading value, the behaviour reverts to the 
skeleton curve of the monotonic test. The phenomenon of plastic strain 
accumulation in mortar layers can be also deduced by looking at the brick 
stress-strain curve, obtained from strain-gauge data during tests on S-C 
specimens: it is seen from the graph in Figure 2.22 (S-C1 sample) that the 
local strains in the brick reach a maximum value of 0.45∙10-3, and are much 
lower if compared with global values, reaching almost 40∙10-3; the energy 
dissipation in bricks appears negligible, so the low overall damping appears 
to be mainly associated to mortar response.  
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Figure 2.22. Brick stress-strain curve obtained from data acquired by the 
vertical strain-gauge during centered axial load test on S-C1 specimen. 

The damage evolution is monitored during tests on S-C specimens (no 
head joints) and is shown in the photographs in Figure 2.23: some vertical 
cracks appear at about 80% of maximum load in a brick (often in the first or 
the last one, which are in contact with the loading plates) and then rapidly 
propagate into the other tiers. After the peak load is reached, the cracks 
increase in size and involve the entire sample. The rupture appears quite 
spread in transversal direction, while, looking at the specimens after the end 
of the tests, an evident transversal expansion of the central portion of the 
prism is clearly induced by some confining effect; finally, in the very last part 
of the experiment, some fragments are ejected and only the central core of the 
cross-section is still reactive. 

Otherwise, looking at the damage evolution in SC-G specimens (provided 
with head joints) a preferential weakness plane is evident (Figure 2.24): 
vertical cracks propagate starting from the vertical mortar joints and then 
involve the whole sample, which is substantially divided into two portions 
(see the last photograph), leading to a lower failure load. 

The reduction in strength found in the specimens with mortar head joints, 
passing from about 7.6MPa to about 4.2MPa (-45%), is accompanied by a 
slight reduction of the softening branch slope, while almost no variation in 
stiffness is recorded for the elastic branch (Table 2.4).  
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Figure 2.23. Failure pattern of historic brick masonry under centered 
compression: S-C specimens. 
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Figure 2.24. Failure pattern of historic brick masonry under centered 
compression: S-CG specimens. 
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2.5.1. Head-joint effect 

As it is known (Hilsdorf, 1969), the failure of brick masonry under 
compression is driven by tensile horizontal stress developing in the bricks as 
a consequence of the mismatch of transverse dilatation between brick and 
mortar layers. In the present case, this phenomenon is amplified by the low 
mortar strength and stiffness if compared to those of the brick and, as a result 
of the confinement of the bed joints, the brickwork strength is much higher 
than that of mortar. 

When head joints are present (S-CG specimens), the average tensile stress 
in the brick remains almost unchanged if compared to S-C type, but a stress 
concentration occurs and the maximum tensile stress significantly increases 
along the vertical plane of the head joints. Since the failure of the brick is 
brittle in traction, the strength is controlled by the maximum, rather than the 
average, stress; this explains the great reduction in strength observed in 
experiments. Conversely, the overall stiffness is mainly controlled by the 
average stress and therefore no significant variation occurs between the two 
specimen types, as observed in the tests.  

A finite element analysis with a 3-D elastic model, reproducing the two 
brickwork patterns, provides a first explanation of the observed behaviour: 
the stress concentration resulting from the presence of head joints is such that 
the same value of maximum tensile stress is reached in S-CG specimen for a 
vertical load about 45% lower than in S-C specimen. The ratio between 
compressive strength of stack bond (S-C) and running bond (S-CG) is 1.94,  
and is higher than the ones found in (Mann and Betzler, 1994) and in 
(Vermeltfoort, 1994) where, anyway, much lower difference in stiffness is 
found between the units and the mortar adopted for building the testing 
samples. In these works, a ratio between the elastic moduli of brick and 
mortar Eb/Em of about 3 results in a ratio between stack bond and running 
bond strength values ranging from 1.3 to 1.4. On the contrary, in the present 
case, the ratio between elastic moduli is about 13 and the ratio between 
compressive strength values is 1.85.  

The horizontal stress field in the two specimens under the maximum 
experimental load (142kN for S-C and 76kN for S-CG samples) is shown in 
Figure 2.25: both analyses give rise to almost the same value of the 
maximum horizontal tensile stress in the bricks (1MPa).  

Numerical simulations are performed considering the average 
experimental elastic modulus Eb=3900MPa for the bricks and an equivalent 
modulus Em=60MPa for the mortar, much lower than the experimental value, 
to account for the inelastic deformation occurring in the tests; in particular, 
Em is defined by requiring the vertical displacement of the model to be the 
same as the one measured in the test at the peak load. As regards the Poisson 
ratios, the values b=0.15 and m=0.35 are assumed for brick and mortar, 
respectively. It has to be noted that the latter is much higher than the elastic 
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Poisson ratio, so as to take into account that mortar behaves as an almost 
uncompressible medium when plastic strains develop. 

 
Figure 2.25. FE analysis results: contour plot of horizontal tensile stresses at 

failure in S-C (left, resultant load 142 kN) and S-CG (right, resultant load 
76kN) specimens. 

For a full explanation of the experimental behaviour, a refined non-linear 
model would be required to take into account the inelastic deformation 
occurring in mortar bed joints and the cracks forming in head joints before 
collapse, since both these effects strongly increase the tensile stress in the 
bricks. Anyway, the recourse to such a refined model would be suitable for 
small specimens but not for large structures like, for example, bridges. In the 
latter case, a simpler model has instead to be defined, in which masonry is 
considered as an equivalent homogeneous medium (Lourenço, 1998) and the 
effect of the head joint is included in the macroscopic properties of the 
material.  

2.5.2. Strength and stiffness estimate through simple analytical 
models 

According to an elastic approach in which brick masonry is regarded as a 
multi-layered medium and strain compatibility is imposed at the interfaces 
between brick and mortar (Hilsdorf, 1969), the compressive strength of 
brickwork fM can be estimated according to the following analytical relation: 
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in which 1 is defined as the ratio between brick and mortar layer thicknesses 
(tm and tb), while 2 is the ratio between the elastic moduli (Eb and Em): 
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For S-CG type specimens, an equivalent mortar joint height is considered 
and an average value eq of the Poisson coefficient is defined, as reported in 
(2.4), where the layer is not made of an entire block (Figure 2.26).  
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Figure 2.26. Identification of the equivalent mortar joint height in S-CG 

specimen for the analytical estimate of the ultimate load. 

The estimated resistance values are 8.15MPa for S-C type specimens and 
3.98MPa for S-CG ones, and are not very far from the average experimental 
results (7.7MPa and 4.25MPa for S-C and S-CG type specimens 
respectively). 

As regards the elastic modulus, several expression are available in 
literature depending on the stiffness of the components (units and mortar), on 
the compressive strength of the assemblage, on the geometry, and on the 
water absorption of the unit (Brooks and Abu Baker, 1998). In the present 
case, an estimated value of 658MPa, not very different from the average 
vertical stiffness found in experimental tests (660MPa), can be obtained by 
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means of expression (2.5), proposed in (de Felice, 2001); such a relation 
results from an homogenization procedure and is independent from the bond 
characteristics. 
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2.6. Brickwork under compression and bending 

Three different specimen types are tested under cyclic eccentric axial load 
(Figure 2.18 and Table 2.3); experiments are carried out under displacement 
control to determine the whole response curve in terms of both Force-
Displacement and Moment-Curvature relations.  

The first specimen type (made in 4 samples denoted as S-C and S-CG) is 
the same as for centered compression tests. It measures 140×140×310mm3 

and is made of five tiers, each consisting of half-brick units. S-CG specimens 
are provided with head joints in the second and in the fourth layers. The 
second type, denoted as S-E5 (7 samples), measures 280×140×310mm3 and is 
made of five tiers consisting of a brick unit alternating with two half-brick 
units; there is a head mortar joint in the second and in the fourth layers, 
parallel to the major side of the cross-section, which is also the direction of 
the axial load eccentricity. Finally, the third type is denoted as S-E9 (4 
samples) and measures 420×140×550 mm3; it is made of nine tiers of bricks 
as shown in Figure 2.18. It presents a head joint parallel to the major side of 
the cross-section (as in S-E5 type specimen) in the second, forth, sixth and 
eighth tiers, observable on the minor lateral sides of the prism (named B and 
D); moreover, there are staggered head joints in the other direction.  

All the specimens are built so as to reproduce the typical arch brick 
arrangement (Figure 2.27) and the way of applying the external load intends 
to replicate the stress condition effectively experimented by the cross-section 
(or by a segment) of a bridge vault. 
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Figure 2.27. Brick arrangement of the vault of a masonry arch bridge (left) 

and schematic illustration of the texture (right).  

2.6.1. Testing set-up for eccentric axial load tests 

The eccentric axial load is applied by means of two steel bars with 
diameter =20mm and two steel HEA140 I-beams, stiffened with vertical 
flanges, in contact with the bases of the masonry prism in order to apply 
compression with the desired eccentricity, avoiding local stress 
concentrations. The initial load eccentricity is known, since the stress 
resultant is forced to pass for the 20 steel bars, which are welded to 20mm 
thick squared steel plates to avoid stress concentrations on the loading plates 
of the MTS testing machine. 

Displacement and strain data are measured using linear potentiometers 
(electrical stroke 5mm, 12.5mm, 25mm, 50mm; resistance 0.44k, 
independent linearity 0.25%) and resistive strain-gauges (initial length 
30mm), arranged as shown in Figures 2.28−2.30. In particular, four 
potentiometers are fixed to the HEA steel I-beam corners by means of 
threaded steel bars with diameter =5mm welded to the I-beam edges, to get 
global displacements and derive the macroscopic response; local 
deformations are read by smaller transducers (positioned vertically and 
horizontally) and strain-gauges applied on the central bricks. 
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Figure 2.28. Schematic illustration of the equipment for eccentric axial load 

tests on S-C and S-CG brickwork specimens. 

 
Figure 2.29. Schematic illustration of the equipment for eccentric axial load 

tests on S-E5 brickwork specimens. 
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The biggest specimen type (S-E9) is instrumented with 15 linear 
potentiometers in addition to the devices already adopted for the other types. 
Additional transducers are applied on the major lateral sides of the prism 
(named A and C), along five vertical alignments and divided into three sets 
(Figures 2.30−2.33) with the purpose of monitoring the cross-section rotation 
and the local deformations during the tests. The transducers are fixed to the 
bricks by means of threaded steel bars with diameter =4mm, placed in 
5mm deep drill holes and fixed by using a bi-component resin. 

 
Figure 2.30. Schematic illustration of the equipment for eccentric axial load 

tests on S-E9 brickwork specimens. 
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Figure 2.31. Specimen preparation: detail of the =4mm threaded steel bars 
(left) and positioning in the drill holes through bi-component resin. 

  

Figure 2.32. HEA-140 I-beam steel bar (left) and 20 steel bar (right) used 
for eccentric axial load tests on SE-9 brickwork specimens. 
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Figure 2.33. Test set-up for monitoring the cross-section deformation during 
eccentric axial load tests on S-E9 specimens. 

2.6.2. Experimental results 

Eccentric axial load tests lead to the determination of the response of a 
masonry element subjected to compression and bending in terms of Load-
Displacement and Moment-Curvature relations. 

The global curvature  (which is the average value along the element 
height) and the global displacement  (which is referred to the load 
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application point) are computed from the displacement data acquired by the 
transducers applied to the corners of the steel I-beams, according to the 
following expressions: 
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In expressions (2.6−2.9)is the average rotation of each I-beam steel 
bar, e is the second-order eccentricity (an increase of the effective 
eccentricity of the external load, up till about 10%, is induced by the rotation 
of the plates), and, finally, hp is the height of the I-beams, equal to 140mm for 
S-C, S-CG and S-E5 type specimens and to 150mm for S-E9 type specimens. 
In fact, for the latter samples, the bars previously used for the other 
experiments are modified with the addition of 10mm thick plates and 
stiffening lateral flanges (Figure 2.32). The computation of  and of all the 
quantities depending on it, is derived directly from the data read by the 
potentiometers at plate edges H1 and H2, being Hi (i=1, 2) the average 
value of the relative displacements measured by the transducers on side i, and 
B the specimen width (i.e. the distance between the transducers), as shown in 
Figure 2.34. 
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Figure 2.34. Schematic illustration of brickwork specimen in its initial and 

deformed configurations. 

The value of the applied load F is directly acquired by the load cell 
integrated in the MTS machine, while the bending moment is computed by 
taking into account the second order effects deriving from the rotation of the 
steel plates (Figure 2.34) according to the following expression: 

  )''e'e(FeFM   (2.10) 

The results are shown in Figures 2.35−2.38 for the various specimens and 
eccentricities; for each test, the Load-Displacement (F-and Moment-
Curvature (M-diagrams are plotted. 
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Figure 2.35. Experimental results of eccentric (e=30mm) axial load tests on 
S-C (up) and S-CG (down) masonry specimens. 
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Figure 2.36. Experimental results of eccentric axial load tests on S-E5 
masonry specimens for different eccentricities (e=40, 60mm). 
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Figure 2.37. Experimental results of eccentric axial load tests on S-E5 
masonry specimens for different eccentricities (e=80, 100mm). 
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Figure 2.38. Experimental results of eccentric axial load tests on S-E9 
masonry specimens for different eccentricities (e=70mm, 110mm). 

The response curves of eccentrically loaded masonry specimens show 
some similar properties if compared to the ones found in centered 
compression tests: an initial elastic branch followed by a non-linear pre-peak 
phase is found; then, after the displacement corresponding to the maximum 
force (F0) and the curvature corresponding to the maximum bending 
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moment (M0) are exceeded, the behaviour is characterized by a linear 
softening phase. 

The synthetic results of the experimental campaign on eccentrically 
loaded historic brickwork are summarized in Table 2.5 in which, for each 
test, the peak values are collected together with the type and the name of the 
specimen, the initial eccentricity e and the correspondent distance u=e−B/2. 

As in the case of centered compression, the cyclic tests show the 
capability of brickwork to sustain unloading-reloading cycles, also when 
performed in the softening branch. Cyclic loading induces a weak strength 
degradation, even if the skeleton curve can still be seen as the envelope of the 
cyclic one, and no heavy stiffness reduction is found. The compaction of 
mortar bed joints results in an increase of the overall stiffness; thus, the slope 
of the reloading branches is higher than the initial elastic one. 

 
Specimen  

type Name e  
[mm] 

u 
[mm] 

F0  
[kN] 

(F0)  
[mm] 

M0  
[kNm] 

(M0)  
[m-1] 

S-C S-C2 30 40 41.2 2.41 1.51 0.18 
S-C4 30 40 60.4 3.67 2.26 0.18 

S-CG S-CG2 30 40 36.2 3.25 1.72 0.43 
S-CG4 30 40 37.7 4.07 1.62 0.33 

S-E5 

S-E5-1 40 100 121.1 8.61 5.48 0.12 
S-E5-2 40 100 141.1 5.22 6.21 0.09 
S-E5-3 60 80 104.6 6.41 6.92 0.14 
S-E5-7 60 80 107.3 5.04 7.04 0.12 
S-E5-4 80 60 76.7 5.89 7.07 0.30 
S-E5-5 100 40 34.5 4.62 3.85 0.27 
S-E5-6 100 40 32.6 3.80 3.79 0.38 

S-E9 

S-E9-1 70 140 186.2 6.22 13.13 0.025 
S-E9-4 70 140 201.2 8.07 14.36 0.035 
S-E9-2 110 100 137.1 7.89 15.37 0.054 
S-E9-3 110 100 139.9 8.26 15.67 0.052 

Table 2.5. Experimental results of masonry specimens under axial load and 
bending moment. 

2.6.3. Crack pattern evolution 

The damage pattern observed in eccentric axial load tests is documented 
by the photographs in Figures 2.39−2.41, and, in general, develops as 
follows: the first crack appears in the compressed edge at about 7080% of 
the peak load; then, cracks spread vertically crossing the mortar joints until 
they affect the whole specimen height, while small cracks also form in the 
lateral faces.  

At the same time, one or more horizontal mortar joints start to open in the 
opposite side. When deformation increases, a localization of cracks develops, 
characterized by the crushing of one or two bricks on the compressed edge, 
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and the opening of the corresponding horizontal bed joint on the opposite one 
(Figures 2.40−2.41).  

  

  

Figure 2.39. Crack pattern evolution of eccentric axial load test on S-C2 
brickwork specimen: deformed configuration (up) and detail of the cracks in 

the compressed edge (down, left side) and of the opening of the bed joint 
(down, right side). 
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Figure 2.40. Crack pattern evolution of eccentric axial load test on S-E5-4 
brickwork specimen. 
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Figure 2.41. Crack pattern evolution of eccentric axial load test on S-E9-4 
brickwork specimen. 
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2.6.4. Maximum load estimate 

Experimental tests show that for high eccentricities (load-resultant out of 
the third medium) the maximum load no longer depends on the specimen 
width B but only on the distance between load resultant and compressed edge 
u=B/2−e. In fact, by comparing the results of SC-G and S-E5 specimens for 
u'=40mm, and those of S-E5 and S-E9 specimens for u′=100mm (Table 2.5), 
comparable values of the maximum load F0 are obtained. The experimental 
results for all specimens provided with head joints are plotted in the F0–u 
plane in Figure 2.42, showing an almost linear dependence of the maximum 
load on the distance from the compressed edge; S-C type specimens are not 
included in this comparison because of the different arrangement of bricks.  
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Figure 2.42. Maximum load (F0) vs. distance to the compressive edge (u). 

Therefore, for high eccentricities, a rough estimate of the load capacity 
can be obtained simply by expression (2.11) considering a uniform stress 
distribution equal to the masonry compressive strength fM over a section area 
equal to 2∙u∙d (where d is the specimen depth), as it happens for perfectly 
plastic materials.  

 du f 2F M0   (2.11) 

The depth of an equivalent stress-block y*=2u is plotted in Figure 2.43 
against the neutral axis depth yc (i.e. the distance between neutral axis and 
compressed edge). Experimental results provide an average value of 0.73 for 
the ratio y*/yc, which is slightly lower than the value 0.80 currently used for 
reinforced concrete sections. 
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Figure 2.43. Stress block depth (y*) vs. neutral axis depth (yc). 

2.6.5. Behaviour after several load cycles 

In eccentric compression tests on S-E9 specimens, several unloading-
reloading ramps are repeated at different levels of displacement or force, 
aiming at investigating the development of the phenomenon of plastic strain 
accumulation. This issue has been widely investigated for concrete and r.c. 
structural elements (see for instance Sakai and Kawashima, 2000), but has 
remained almost unexplored for masonry. Figure 2.44 shows the detail of the 
Force-Displacement response curve at one of the unloading displacement 
levels, for two specimens having different eccentricity values (e=70mm and 
e=110mm) imposed at the beginning of the tests. 

An asymptotic load decrease is clearly observable, probably due to the 
progressive exhaustion of the mortar compaction in the bed joints. A limit 
condition defined by a stability point, as it is named in (AlShebani and Sinha, 
1999), can be identified in each step. Herein the stability point is found for 
each displacement value where unloading-reloading cycles are performed as 
follows: force values at the beginning of each unloading branch are collected, 
then the experimental data are interpolated by using a hyperbolic function 
(2.12). The latter is similar to the expressions typically adopted to represent 
age and long term effects on masonry elements (Brooks and Abu Baker, 
1994; Brooks et al., 1997), and was initially proposed to describe creep 
phenomena on concrete (Ross, 1937).  

The force value F(n) after n cycles is given by (2.12), depending on the 
first value F(0) (point on the skeleton curve), on the number of cycles n, and 
on two scalar coefficients b1 and b2; this kind of expression is found to be 
suitable to represent the strength reduction induced by damage evolution, as 
proved by the values of R2, all very close to 1.0 (Figures 2.45 and 2.46). 
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Figure 2.44. Detail of the experimental F- response curve of S-E9 type 
specimens for the eccentricity values e=70mm (specimen S-E9-4, left) and 

e=110mm (specimen S-E9-3, right). 

 
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When n the force tends to F(0)∙(1−b1); in this condition the plastic 
strain is considered completely stabilized. The parameter b1 expresses the 
part of F(0) that is lost because of a completely developed strength 
degradation, while b2 determines the degradation rate. 

The coefficients b1 and b2 are easily determined by performing a variable 
transformation k=1/n leading to the linear relation (2.13), whose terms are 
explicated in (2.14). In the k−G(k) plane a linear regression is performed to 
determine the coefficients C1 and C2; then, the parameters of the damage 
function are in turn found according to (2.14). 

 21 CkC)k(G   (2.13) 
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  (2.14) 

Starting from the so determined stability points, a stability curve is 
estimated, intending to represent the masonry response after several (to the 
limit, infinite) wide cycles, or, more generally, after whatever complex 
loading history. Such a relation could be used to represent the material 
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properties within a numerical simulation directed to achieve a lower-bound 
estimate of the long-term resistance of a masonry construction.  

The stability curves are plotted in Figure 2.47 for the two considered S-E9 
specimens.  
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Figure 2.45. Interpolation through damage function of experimental force 
values at the beginning of unloading phases for specimen S-E9-4 (e=70mm). 
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Figure 2.46. Interpolation through damage function of experimental force 
values at the beginning of unloading phases for specimen S-E9-3 (e=110mm). 
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Figure 2.47. Stability curves for S-E9 specimens, for different eccentricity 
values: e=70mm (Specimen S-E9-4, left) and e=110mm (S-E3-4, right). 

Finally, it has to be pointed out that the study of this particular aspect of 
the mechanical response of masonry does not intend to investigate its fatigue 
strength; in such a case several thousands of unloading-reloading cycles 
should be carried out (Tomor and Wang, 2010), with a narrow load variation 
(the one that could be induced by typical exercise conditions, like the traffic 
loads) starting from lower stress levels in the first loading branch (the stress 
induced by the self weight of the structure).  

2.6.6. Cross-section behaviour 

The experimental campaign on historic brickwork allows the global cross-
section behaviour of masonry prisms subjected to compression and bending 
to be investigated; moreover, it provides information on whether the plane 
section assumption can be considered adequate for representing brickwork 
elements under eccentric loading.  

The set-up of the tests, equipped with the steel plates through which the 
force is applied, ensures that the section is enforced to be plane at the 
boundary of the specimen; the strain distribution at the local level is 
monitored by means of three sets of vertical potentiometers arranged on the 
front and on the back sides of the prism (Figures 2.30−2.33). The cross-
section deformation during the test is therefore deduced starting from the 
relative displacements between the couples of points where instruments are 
fixed, divided by the distance between them. The latter is approximately 
equal to 120mm for the two sets of transducers on side A, and to 240mm for 
the transducers on side C. 
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On side A, the average of the strains read by each couple of instruments 
(stroke 25mm and 50mm) at every vertical alignment is named local 
strain; the strain measured by the transducers on side C (stroke 100mm) is 
named intermediate strain.  

The results are plotted in Figures 2.48 and 2.49 for two samples having 
different eccentricities (e=70mm and e=110mm). Local and intermediate 
strains are compared with the average strain of the whole prism, as detected 
by the global potentiometers at its edges. The steps of the tests in which the 
results are represented are identified by a rate of the displacement 
corresponding to the maximum load (F0), ranging from 25% to 125%.  
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Figure 2.48. Cross-section local (left) and intermediate (right) deformation of 
a brickwork specimen under eccentric loading at different displacement steps: 

=0.25125 (F0); e=70mm. 



 Chapter 2 81 

Stefano De Santis 

-200 -100 0 100 200-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Base distance from the central axis [mm]

V
er

tic
al

 s
tra

in

 

 

e = 110mm

Side A

Global strain  = 25% (Fo)
Global strain  = 50% (Fo)
Global strain  = 75% (Fo)
Global strain  = 100% (Fo)
Global strain  = 125% (Fo)
Local strain  = 25% (Fo)
Local strain  = 50% (Fo)
Local strain  = 75% (Fo)
Local strain  = 100% (Fo)
Local strain  = 125% (Fo)  

-200 -100 0 100 200-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Base distance from the central axis [mm]

V
er

tic
al

 s
tra

in
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Figure 2.49. Cross-section local (left) and intermediate (right) deformation of 
a brickwork specimen under eccentric loading at different displacement steps: 

=0.25125 (F0); e=110mm. 

It is seen that the cross-section remains almost plane, and rotates around a 
fixed neutral axis as the displacement increases up to (F0). Then, a slight 
deviation from the plane behaviour is displayed and the neutral axis moves 
towards the compressed side. Clearly, at this stage, mortar joints start to open 
and several cracks develop within the specimen, leading to stress and strain 
concentrations; a deviation from a linear distribution results from these 
phenomena, as it is pointed out also in (Brencich et al., 2002) and in 
(Brencich and Gambarotta, 2005), where, anyway, the specimens are made of 
four entire bricks (so there are no head joints) and the cross-section behaviour 
is estimated starting from the relative displacements between couples of 
points separated by one only bed joint. 

The comparison between average and local strains shows that the former 
ones are higher up to the attainment of the maximum load, probably because 
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they are influenced by the crushing occurring in the mortar joints in contact 
with the steel plates and by the detachment of the plates from the specimen at 
the tensile edge. At higher displacements, local strains increase until they 
exceed global ones.  

The same remarks can be made for the intermediate deformation: the 
cross-section rotation appears smaller than the global average rotation, 
especially in the compressed edge of the specimen. 

Finally, it has to be pointed that the wide cracks developing at the end of 
the test disturb the instrumental readings which become unreliable. 

In conclusion, according to the experimental results, it seems that, from an 
engineering point of view, brick masonry under axial load and bending 
moment behaves according to the plane section assumption, also in the non-
linear range and at least until a state of heavy damage is reached. This 
consideration makes it possible to adopt a beam element to represent the 
response of masonry elements under eccentric compression. 
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3. Modelling brickwork elements 
through fiber beams 

3.1. The fiber beam element  

3.1.1. Beam element formulation 

The modelling strategy developed within the present work for the analysis 
of multi-span masonry bridges makes use of a beam mixed finite element 
with fiber cross-section, that has been originally developed for the simulation 
of reinforced concrete members under seismic actions (Spacone et al., 1996). 
It is a non-linear element with distributed plasticity providing an accurate 
description of the structural response when distributed inelastic phenomena 
occur, thanks to an adequate representation of the interaction between axial 
force and bending moment on the cross-section under biaxial loading 
conditions. Moreover, it takes into account the highly non-linear hysteretic 
behaviour of the material, offering the possibility of performing structural 
analyses under complex loading histories. Finally, the simplicity intrinsic in a 
frame element assures relatively low computational and modelling costs. 

The cross-section is discretized into nm fibers, characterized by uniaxial 
constitutive relations. The section force-deformation law is derived by 
numerical integration of normal stress and stiffness of the fibers at the 
integration points and is based on the assumption that deformations are small 
and that plane sections remain plane during the loading history; thus, no 
sliding between fibers is allowed. 

The formulation is based on the mixed method, and is extensively 
illustrated in (Taucer et al., 1991). The starting point is the description of the 
force distribution within the element by interpolation functions that satisfy 
equilibrium. The selection of flexibility dependent shape functions for the 
deformation field considerably simplifies the final equations; thus, the mixed 
method can be seen as a particular case of the flexibility method, in which the 
choice of adequate shape functions is made. 

The solving procedure is based on a flexibility based state determination 
iterative algorithm and is such that the equilibrium and the compatibility of 



84 Modelling brickwork elements through fiber beams 

Roma Tre University - DiS 

the element are always satisfied by the assumed force and deformation 
interpolation functions, as well as by the section constitutive relation, within 
a specified tolerance. 

The formulation starts from the definition of the deformation d(x) and 
force D(x) fields along the element. Their expressions (3.1−3.3) depend on 
the deformation a(x) and force b(x) interpolation matrices, chosen a priori. In 
(3.1−3.3)  denotes the increments of the corresponding quantities, Q the 
element force vector, q the element deformation vector and, finally, i the step 
of the iterative solution algorithm loop. The latter is performed at the 
structure degrees of freedom until equilibrium between applied loads and 
internal resisting forces is satisfied. 

     ii  xx QbD   (3.1) 

     ii  xx QbD    (3.2) 

     ii  xx qad   (3.3) 

The integral forms of the linearized section force-deformation relation and 
of equilibrium are combined to obtain the relation between element force and 
deformation increments.  

The former is derived from a weighted integral along the element, whose 
length is denoted as L, as it is stated by expression (3.4), in which f i-1(x) is 
the section flexibility matrix computed at the step i-1 and relating force and 
deformation fields within the section, while DT denotes a virtual section 
force field. Equation (3.5) is then obtained by substituting (3.1−3.3) in (3.4), 
and, as the it must hold for any virtual element force vector QT, equation 
(3.6) is derived: 

          0dx x xx x
L

0

i1iiT   DfdD  (3.4) 

              0dx x x xx x x 
L

0

i1iiTT    QbfqabQ  (3.5) 

        x x     0x x i1iii1ii QFqTQFqT    (3.6) 

In the linearized section force-deformation law (3.6), F i-1 is the element 
flexibility matrix (3.7) and T a matrix that only depends on the interpolation 
function matrices (3.8). 
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       
L

0

1iT1-i dx x x x bfbF  (3.7) 

    
L

0

T dx x x abT  (3.8) 

The equilibrium equation (3.9) is derived from the virtual displacement 
principle and contains the external forces vector Pi and the virtual element 
deformation vector qT. As it must hold for any arbitrary qT, equation (3.10) 
follows, which is the matrix expression of the integral form of the element 
equilibrium equations: 

             iT
L

0

i1iTT  dx x x x x x PqQbQbaq     (3.9) 

 iiT1iT  PQTQT   (3.10) 

Combining equations (3.6) and (3.10) results to the system (3.11), in 
which the first equation is solved in Qi and substituted in the second one to 
get equation (3.12): 
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   1iTii11iT      QTPqTFT  (3.12) 

A special choice of the deformation shape functions a(x) results in 
considerable simplification; in fact, if the shape functions assume the 
expression stated in (3.13), matrix T reduces to the identity matrix I (it has to 
be noted that a(x) changes during the iterative solving procedure), as it is 
demonstrated in (3.14) and (3.15). With this choice of the deformation shape 
functions, equation (3.12) is simplified, assuming the form stated by (3.16). 

         11i1i  x xx
 Fbfa  (3.13) 

         i11i1ii   x xx qFbfd 
  (3.14) 
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  (3.15) 

   1iii11i     QPqF  (3.16) 

The latter equation expresses the linearized relation between the applied 
unbalanced forces P-Qi-1 and the corresponding deformation increment qi at 
the element level. The element stiffness matrix K=[F]-1 is written in the form 
of inverted flexibility matrix to indicate that the latter is firstly determined 
and then inverted. 

In the present case, the force interpolation functions assume the following 
form, leading to linear bending moments and constant axial force along the 
element: 
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3.1.2. State determination process 

The state determination process calculates the resisting forces starting 
from the given deformations, and is organized into three nested phases 
corresponding to the structure level, the element level and, finally, the cross-
section level.  

The nested iterative procedures are identified by different superscripts: 
 

k  denotes the applied load; the external load P is imposed in a 
sequence of load increments Pk, so that at generic step k the total 
external load is Pk = Pk-1 Pk; 

 
i  denotes the Newton-Raphson iteration at the structure level, i.e. the 

structure state determination process iteration, yielding the 
structural displacements pk corresponding to the applied loads Pk; 
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j  denotes the iteration in the element state determination process, 
yielding the element resisting forces Qi corresponding to the 
element deformations qi, during the i-th Newton-Raphson iteration. 

 
If the element cross-section is subdivided into fibers a fourth internal loop 

is added to the process, yielding the resisting stresses and the stiffness of the 
cross-section at the integration point, given the strains, within the j-th 
iteration of the element state determination process.  

Input and output of the nested state determination processes are 
summarized in Table (3.1), while the detailed steps of the process are shown 
in the flow charts in Figures 3.2−3.4. 

 
Module Input Output 

Structure 
(k) 

Applied force increment  
P = kPk 

Total displacements p 
Displacement increments p 

Resisting forces PR 
Stiffness KS 

Element 
(i) 

Total deformations q 
Deformation increments q 

Resisting forces Q 
Stiffness K 

Section 
(j) 

Force increments D(x) Residual deformation r(x) 
Flexibility f(x) 

Fiber Total strains e(x) 
Strain increments e(x) 

Resisting stresses E(x) 
Stiffness Etan 

Table 3.1. Input and output data for each module of the state determination 
process. 

The whole process is organized as follows:  
 
1.  The external load P to assign to the structure is divided into a 

certain number of load increments Pk. At each step k of the 
incremental analysis, the corresponding structure displacements 
qk are determined by the Newton-Raphson iterative algorithm. 
At the i-th iteration of the solving procedure, the structure tangent 
stiffness matrix KS

i-1, computed at the previous step, is adopted 
for solving the equilibrium equation: 

 ii1i
S  PpK   (3.18) 

2. The element deformations are determined from the structure 
displacement by means of a matrix L, which is the combination of 
two transformations: in the first transformation the element 
displacements in the global reference system p are transformed to 
the displacements in the element local one q*; in the second 
transformation the element displacements are transformed in the 
element deformation q by elimination of the rigid-body modes. 
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The incremental form of the transformation from structure 
displacements to element deformations is expressed by relation 
(3.19). 

 i
Elem

i  pLq   (3.19) 

The element deformations qi do not change during the i-th step 
of the solution algorithm; this ensures displacement compatibility 
at the element ends, as it is illustrated in Figure 3.2, where points 
B, D and F (representing the state of the element at the end of 
subsequent iterations in loop j) lie on the same vertical line. From 
now on, the resisting forces for the given element deformations 
qi are established in the element state determination process. 

Q

q

qi-1 qi

qi

Qi-1

Qi

Qi

F j=0

Q j=1 = [F j=0]-1 q j=1

s j=1

F j=1

s j=2

F j=2

Q j=3 = [F j=2]-1 q j=3

A

B C

D E

F

F j=3

Q j=2 = [F j=1]-1 q j=2

 
Figure 3.1. Graph of the element state determination. 

3. The element state determination is performed for each element in 
loop j. The element force increments are determined with the 
element stiffness matrix, evaluated at the end of the previous 
iteration j-1 (3.20), and the element forces are updated (3.21):  

 j1jj qKQ    (3.20) 

 j1jj QQQ    (3.21) 



 Chapter 3 89 

Stefano De Santis 

In the initial step (j=1) the following values are taken for element 
stiffness matrix, element deformations and element forces: 

 1i0 KK  (3.22) 

 i1 qq   (3.23) 

 1i0  QQ  (3.24) 

where i-1 corresponds to the state at the end of the last Newton-
Raphson iteration. 

 
4. The section state determination is performed for each control 

section (integration point) of the element. The section force 
increments Dj(x) are determined from the force interpolation 
functions b(x) (3.25), and then the section forces are updated 
(3.26). 

     jj  xx QbD   (3.25) 

      xxx j1jj DDD    (3.26) 

5. The section deformation increments dj(x) are determined by 
adding the residual section deformations from the previous 
iteration rj-1(x) to the deformation increments produced by the 
section force incrementsDj(x) (3.37). The latter are determined 
with the section flexibility matrix f j-1(x) at the end of the previous 
iteration loop j (3.28): 

        x xxx j1j1jj Dfrd    (3.27) 

      xxx j1jj ddd    (3.28) 

In the initial step (j=1) r0(x) = 0. 

6. The tangent stiffness kj(x) and flexibility fj(x) matrices, and the 
section resisting forces DR(x) are determined by means of the 
section constitutive law. The latter can be explicitly known or, if 
the section in discretized into fibers, assembled starting from the 
geometric and mechanical properties of the fibers. 

 
7. The unbalanced forces and the residual section deformations are 

determined: 
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      xxx j
R

jj
U DDD   (3.29) 

      x xx j
R

jj Dfr   (3.30) 

8. The element flexibility and stiffness matrices are determined: 

      
L

0

jTj dx x x x bfbF  (3.31) 

   1jj 
 FK  (3.32) 

9. Convergence test is performed:  
− if the unbalanced forces at all element sections are 

sufficiently small (i.e. lower than a specified tolerance) the 
element is considered to have converged; the element force 
vector and stiffness matrix are set for the new step i+1: 

 ji QQ   (3.33) 

 ji KK   (3.34) 

− if some sections have not converged the residual element 
deformation sj are determined by integration of the residual 
section deformations rj(x) (3.35), j is incremented to j+1, and 
the new iteration begins with a new deformation increment 
qj+1; the latter is set equal to −sj (3.36). 

    
L

0

jTj dx  x x rbs  (3.35) 

 j1j sq    (3.36) 

The convergence criterion widely used in the analyses presented 
in the present work is based on the energy increment the system 
experiences at each iteration (3.37) (Spacone et al., 1996). 

    tol
  
  

T10T1

jjjT


 qKq
sKs  (3.37) 

When all the elements have converged the step i is complete and a 
new iteration i+1 can begin. 
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10. The updated structure resisting forces are determined by 

assembling the element force vectors (3.38); the current element 
stiffness matrices are assembled to form a new structure stiffness 
matrix (3.39). 

  



n

1Elem
Elem

iT
Elem

i
R QLP  (3.38) 

  



n

1Elem
ElemElem

iT
Elem

i
S LKLK  (3.39) 

 
11. At this point the structure resisting forces are compared with the 

total applied loads; if the difference (named structure unbalanced 
force vector PU

i) is within the specified tolerance, i is 
incremented to i+1, and the new Newton-Raphson iteration 
begins. Steps 1−11 are repeated after replacing Pi with Pi+1 = 
PU

i until convergence takes place at structure degrees of 
freedom. 
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Initial load increment P = Pk=1

Initial structure tangent stiffness Ks,

k=1

i=1

Solve P = Ks∙p  pi = [Ki-1]-1 ∙ PE
i

pi = pi-1 + pi

For Elem = 1, …, # of elements

Element State Determination
Input: qi = LElem pi

Output: Qi, Ki
Elem++

Updated structure tangent stiffness: 
Ks

i = Elem LT Ki L

Updated structure resisting force vector: 
PR

i = Elem LT Qi

Unbalanced force vector: 
PU

i = Pi - PR
i

Structure convergence test: 
||PU

i || < 

i++
PE

i+1 = Pu
i

no

k++
P = Pk=k+1

yes
 

Figure 3.2. Flow chart of the structure state determination. 
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Element deformation vector
qi = LElem pi

qi = qi + qi-1

Updated section flexibility matrix: f j(x) = [k j(x)]-1

Section unbalanced force vector : DU
j(x)= Dj(x) - DR

j(x)
Section residual deformation vector : r j(x) = f j(x) DU

j(x) 

For Sec = 1, …, # of sections

Section State Determination:
Section force increment vector:  Dj(x)= b(x) Qj

Updated section force vector: Dj(x)= Dj-1(x) + Dj(x)
Section deformation increment vector:  dj(x)= r j-1(x)  + f j-1(x) Dj(x)

Updated section deformation vector: dj(x)= dj-1(x) + dj(x)

yes

Element tangent flexibility and stiffness matrixes:
(numerically computed) 

F j = 0
L bT(x) f j(x) bT(x) dx
K j = [F j]-1 

Element convergence test:
|| DU

j(x) || < Sec

j=1

Element force vector
Qj = Kj-1qj 

Qj = Qj + Qj-1

Section Constitutive Relationship
Input: dj(x)

Output: DR
j(x), kj(x)

Sec++

no

j++
Element residual

deformation vector:
(numerically computed)
s j = 0

L bT(x) r j(x) dx
qj+1 = s j 

Q i = Q j
K i =K j

Elem++

 
Figure 3.3. Flow chart of the element state determination. 
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If the cross-section is discretized into fibers, its force-deformation law is 
not explicit, but is derived from the constitutive relations of the fibers by 
means of a section state determination process, which is summarized in the 
flow chart in Figure 3.4 and in the graph in Figure 3.5. 

The section deformation vector d(x) is related to the fiber strain vector 
e(x) according to (3.40), where l(x) is a linear geometric matrix containing 
the position of the fibers (3.41): 

      x xx dle   (3.40) 
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 (3.41) 

Analogously, the fiber deformation increment at step j of the element state 
determination process is obtained from the element deformation increment 
(3.42); once this is known, the fiber deformation can be updated (3.43): 

      x xx jj dle   (3.42) 

      x xx j1jj eee    (3.43) 

The stress and the tangent modulus of each fiber is determined from the 
appropriate stress-strain law; the fiber stresses ifib

j are then grouped in vector 
Ej and the elastic moduli in a diagonal matrix Ej

tan. Calling A a diagonal 
matrix containing the areas of the fibers, the section tangent stiffness matrix 
is written as follows: 
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The section stiffness matrix kj(x) is inverted to get the flexibility stiffness 
matrix fj(x), and the section resisting forces DR

j(x) are derived from the 
contribution of all fibers (3.45). 

  
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Since the beam element is based on the plane section assumption no shear 
deformation can be simulated, unless more complex form of the 
compatibility matrix l(x) is adopted. In this case, even if sliding between 
fibers remains not allowed, a supplementary deformation is added to the one 
due to flexure. 

For Fib = 1, …, # of fiber

Fiber State Determination:
Fiber deformation increment vector:  e j(x)= l(x) dj(x)
Updated fiber deformation vector: e j(x)= e j-1(x) + ej(x)

Fiber tangent Young modulus:  Etan(defined in uniaxial constitutive law)
Fibre resisting stress: (from uniaxial constitutive law)

Fib++

Diagonal matrix of the tangent moduli: Etan
j

Diagonal matrix of the areas: A
Vector of the fiber stresses: Ej

Section tangent stiffess matrix: kj(x) = lT(x) (Etan
j A) l(x)

Section resisting forces: DR
j(x) = lT(x) A Etan

j

 
Figure 3.4. Flow chart of the section state determination. 
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d(x)

di-1(x)

Di-1(x)

f j=0(x)

D j=1 = b(x)Q j=1

A

B C
D

E
F

D(x)

di(x)

di(x)

Di(x)

Di(x)

f j=1(x)

f j=3(x)

D j=2 = b(x)Q j=2

D j=3 = b(x)Q j=3

d j=1(x)

dj(x)= r j-1(x)  + f j-1(x) Dj(x)

r j=1(x)

f j=2(x)

r j=2(x)

 
Figure 3.5. Graph of the section state determination. 

The element state determination process is performed in the local element 
reference system, while the structure equilibrium is solved in the global one. 
The transformation between the two reference systems is governed by matrix 
B. It is applied to the vector of the element basic forces W (axial load, shear 
and bending moment in the deformed configuration) and yields the vector of 
element forces Q (nodal forces in the undeformed configuration). The 
element force vectors of all the elements are assembled to build the solving 
system of the structure equilibrium problem (Figure 3.6). 
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L0

ux

uy

Q1

Q2
Q3 Q4

Q5
Q6

W1

W1

(W2+W3) / L

(W2+W3) / L

W3

W2
c

 
Figure 3.6. Equilibrium of frame element in the deformed configuration and 

its projection on the undeformed configuration (plane case). 

If geometric non-linearities are negligible, a linear geometric 
transformation between local and global reference system can be used; it 
consists in writing the equilibrium of the element, at each step, by evaluating 
the stiffness matrix K in the initial undeformed configuration; in this case B 
is constant. On the contrary, when large rotations and P- (buckling) effects 
have to be taken into account, a corotational approach is adopted; it consists 
in introducing a third reference system, in addition to the local element and 
the global ones, evolving during the load application; in this case, B depends 
on the element deformation vector q (3.46−3.47): 

  WqBQ    (3.46) 

  











































3

2

1

6

5

4

3

2

1

W
W
W

 

Q
Q
Q
Q
Q
Q

qB  (3.47) 

The transformation matrix in the corotational approach has the form stated 
by (3.48), where L0 is the element initial length and c is the element chord 
rotation in the updated configuration, as shown in Figure 3.6. 
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The chord rotation can be expressed by its truncated series expansion: 
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If the effect of the element rotation is neglected, sin(c) is assumed to be 
null when divided for L0 and cos(c) is confused with 1; the resulting 
transformation matrix considers only P- effects, and has the following form: 

  

 

 

 

100
L/1L/1sin

001
010
L/1L/1sin
001

00c

00c

P
































 qB  (3.50) 

Finally, the linear form of B is derived by assuming that c is negligible: 
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3.2. Macroscopic constitutive relations 

3.2.1. Monotonic behaviour 

The constitutive relation chosen to describe the global response of historic 
brickwork under monotonic compression is the modified Kent and Park 
model, which is the stress-strain relation proposed for concrete by Kent and 
Park (1971) as extended in (Scott et al., 1982). Since it offers a good balance 
between simplicity and accuracy it is widely adopted for r.c. structures, while 
it has been less used for masonry. Nonetheless, it is suitable to represent the 
main properties shown by historic brickwork in experimental tests: initial 
elastic branch followed by a non-linear phase before the peak stress; post-
peak behaviour characterized by a linear softening branch, with a residual 
stress that, on the base of experimental data, is negligible for the brickwork 
that is of interest within this work. 

In the modified Kent and Park model the monotonic stress-strain relation 
in compression is described by three regions (Figure 3.7), in which it assumes 
the expressions stated in (3.52−3.54), in which fcp is the compressive 
strength, c0 the corresponding strain, fcu the residual resistance and cu the 
strain value at the end of the softening branch; the convention that 
compression is positive is assumed. 

Region O-A: 0c  















0c0c

cp 2f  (3.52) 

Region A-B: cucu     cp
0ccu

0c
cpcu fff 











   (3.53) 

Region B-C: cu   cuf   (3.54)  
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Figure 3.7. Modified Kent and Park model (1982) for monotonic compression. 

For each strain value, the corresponding stress has to be defined, together 
with the tangent modulus, in order to assemble the stiffness vector of the 
cross-section. The tangent moduli of the three regions are stated by 
expressions (3.55−3.57). 

Region O-A: 










0c
0c 1E)(E  (3.55) 

Region A-B: 0
ff

E
0ccu

cpcu
soft 




   (3.56) 

Region B-C:  0E    (3.57)  

The Kent and Park relation adequately represent the response of historic 
brickwork under compression, as it is shown by the graphs in Figure 3.8, 
where it is plotted together with the experimental curves for the two different 
typologies of specimen tested under pure compression (S-C and S-CG); the 
parameters assigned to the constitutive law (coordinates of the peak and of 
the first point of the horizontal final branch) are reported in Table 3.2. 
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Figure 3.8. Experimental stress-strain curves for S-C (left) and S-CG (right) 
type specimens under centered compression and Kent and Park relations. 

Description Symbol S-C Specimen S-CG Specimen 
Compressive strength fcp -7.1 MPa -4.23 MPa 

Strain at compressive strength c0 -0.0186 -0.0115 
Crushing strength (residual resistance) fcu -0.05 MPa -0.05 MPa 

Strain at crushing strength cu -0.0405 -0.0415 

Table 3.2. Parameters of the constitutive relation for the two specimen types. 

The modified Kent and Park model is already implemented in OpenSees, 
which is the software used to perform numerical simulations within the 
present work, and is named Concrete01.  

3.2.2. Proposed cyclic constitutive relation without strength 
degradation 

The cyclic behaviour of the modified Kent and Park constitutive relation 
implemented in OpenSees in material Concrete02 is described by the 
hysteretic unloading and reloading rules proposed in (Yassin, 1994), which 
are a set of linear stress-strain relations. Anyway, it is not able to accurately 
reproduce the unloading-reloading behaviour of historic brickwork, as it is 
found in experimental tests, and presents the restriction that the stiffness of 
the reloading phase and the amplitude of hysteretic cycles are defined by 
means of a unique parameter, so that once one of them is chosen the other 
one is automatically determined. Thus, a modified constitutive law named 
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Masonry01, is defined and implemented in OpenSees source code within the 
present research work. The stiffness of the unloading and reloading branches 
can be separately defined (Figure 3.9) allowing the user to choose the 
amplitude of hysteretic cycles; thus the effective cyclic response is better 
represented. The skeleton curve is the same of Concrete01 and Concrete02 
materials implemented in OpenSees.  
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Figure 3.9. Unloading-reloading branches in Masonry01 constitutive model. 

In Masonry01 constitutive relation the unloading branch D-E-F is 
described by a bi-linear function, while the reloading phase is represented by 
a linear one F-D (Figure 3.9); the resulting hysteretic cycle is closed, so 
damping properties can be modelled, but neither an eventual strength nor 
stiffness degradation are taken into account. The slopes of the three branches 
are defined by means of the positive scalar coefficients 1, 2 and , as a rate 
of the initial tangent stiffness Ec0. 

Table 3.3 collects the parameters of Masonry01 constitutive relation; note 
that the compressive stresses and strains have to be defined as negative 
values in the implementation, even if the assumption that compression is 
positive is made in the graphs.  
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Symbol Description Range Assigned 
value 

fcp Compressive strength < 0 -7.1 MPa 
c0 Strain at compressive strength < 0 -0.019 
fcu Crushing strength (residual resistance)  0  -0.05 MPa 
cu Strain at crushing strength  0 -0.0405 
 Parameter defining the slope of the reloading branch* > 0 4.0 

1 
Parameter defining the initial slope of the unloading 

branch*   6.0 

2 
Parameter defining the final slope of the unloading 

branch** (0,1) 0.25 

*: with respect to the initial tangent stiffness Ec0 
**: with respect to the initial slope of the unloading branch 1Ec0 

Table 3.3. Parameters of Masonry01 constitutive relationship and values 
assigned on the base of experimental results on S-C specimens. 

Masonry01 curve is represented in Figure 3.10 together with the 
experimental response of a S-C specimen and Concrete02 law, to show the 
improvement in describing the cyclic response; the parameters assigned to 
both the constitutive models are the best choice that can be made to match the 
experimental data. 
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Figure 3.10. Experimental stress-strain curve of S-C specimen under cyclic 

centered compression, Masonry01 and Concrete02 constitutive models. 
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3.2.3. Proposed cyclic constitutive relation with strength 
degradation 

Aiming at simulating the strength degradation observed in experimental 
tests on masonry specimens, a second constitutive relation named Masonry02 
is defined and implemented in OpenSees source code within the present 
research work. The skeleton curve is the same of Masonry01 law, while the 
unloading-reloading phase is defined on the base of experimental data to 
capture damage accumulation and energy dissipation in the material due to 
cyclic loading. The shape of unloading and reloading curves depends on the 
amount of non recoverable damage, and on micromechanical phenomena 
occurring in mortar layers and in bricks, as well as in their interface, that 
herein are treated at macroscopic level to reproduce the masonry element 
global response.  

Many researchers have introduced constitutive relations for describing this 
kind of effects on concrete as it is illustrated, among others, in (Chang and 
Mander, 1994; Orakcal et al., 2006; Sima et al., 2008), but only a few papers 
have been published regarding the strength degradation due to cyclic loading 
on masonry. In (AlShebani and Sinha, 1999) the response after several 
loading cycles is considered, but no hysteretic dissipation is included and the 
analytical constitutive model, which is experimentally derived, has not been 
implemented in a structural model code.  

Herein, the unloading curve is defined by an exponential function, which 
is concave from the unloading point and characterized by a high stiffness at 
the beginning and a lower slope at low stresses. The reloading curve is a 
linear function, and the reloading stiffness depends on strain level and 
strength degradation. Differently from Concrete02 and Masonry01 relations, 
the hysteretic cycle is not closed and its final point has a lower stress value 
than the initial point (Figure 3.11). The expressions of unloading and 
reloading branches are stated by (3.58−3.61), while Table 3.4 collects the 
parameters of Masonry02 constitutive relation; note that compressive stresses 
and strains have to be defined as negative values in the implementation. 

 
Unloading branch (G-H):  
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Reloading branch (H-I): 
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   relpl E  (3.60) 

 
plun

)1(

relE



 ; 










2

1)0()1(

b
b1  (3.61) 

 
Symbol Description Range Assigned 

value 
fcp Compressive strength < 0 -7.1 MPa 
c0 Strain at compressive strength < 0 -0.019 
fcu Crushing strength (residual resistance)  0  -0.05 MPa 
cu Strain at crushing strength  0 -0.0405 
 Parameter defining the slope of the reloading branch* > 0 4.0 
dh Parameter defining the amplitude of hysteretic cycles [0,1] 0.3 

 Parameter defining the final slope of the unloading 
branch* > 0 1.0 

b1 
Parameter defining the strength loss after infinite 

cycles** [0,1] 0.27 

b2 Parameter defining the strength degradation rate > 0 1.44 
*: with respect to the initial tangent stiffness 
**: with respect to the initial force value F(0)  

Table 3.4. Parameters of Masonry02 constitutive relation and values assigned 
on the base of experimental results on S-C specimens. 

After n unloading-reloading cycles the compressive strength (n) is 
defined by an expression depending on the initial value (0), on the scalar 
parameters b1 and b2 (to be determined experimentally), and on n itself 
(3.62). Note that this is the same expression adopted to identify the stability 
point in eccentric compression tests on S-E9 specimens (2.12). 

 










nb
nb1

2

1)0()n(  (3.62) 

If n=0 the point describing the actual state of the fiber is on the skeleton 
curve and its coordinates are (un, (0)). When n>0, (n) decreases, and when 
n, the stress tends to the asymptotic value () (3.63). The stability point 
(AlShebani and Sinha, 1999) has coordinates (un, ()). 

  1
)0()( b1   (3.63) 

The parameter b1 defines the rate of the initial stress that is lost after a 
very high (to the limit infinite) number of cycles; its complementary (1−b1) 
quantifies the stress at the stability point, value below which it is not possible 
to go, despite the degradation induced by the loading history. The parameter 
b2 defines the degradation rate; with high values of b2 the strength reduction 
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is slow, while if b2 is small the stability point is rapidly reached. Finally, the 
parameter dh governs the amplitude of the hysteretic cycles, which can be 
assumed as a reliable measure of energy dissipation: when dh is small the 
cycles are narrow (if it becomes 0 their area is null), while high values of dh 
(close to 1.0) result in large cycles and, consequently, strong dissipation 
(Figure 3.12).  
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Figure 3.11. Unloading-reloading branches in Masonry02 constitutive model. 
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Figure 3.12. Masonry02 constitutive relation: unloading-reloading branches 

for different values of b2 (left) and dh (right). 
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Masonry02 curve is plotted in Figure 3.13 together with the experimental 
curve of a S-C specimen, showing that it yields a satisfactory representation 
of the effective cyclic response of historic brickwork under compression, 
taking into account the strength degradation induced by cyclic loading. The 
parameters assigned to the constitutive relation are collected in Table 3.4, and 
are determined as follows: , dh and  are chosen so as to match the 
experimental response curve, while b1 and b2 are got from the results of the 
tests on S-E9 specimens and are equal to the average values of the parameters 
of the interpolating functions (Figures 2.45 and 2.46). 
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Figure 3.13. Experimental stress-strain curve of S-C specimen under cyclic 

centered compression and Masonry02 constitutive model. 

3.3. Simulation of eccentric compression tests  

Eccentric axial load tests on historic brickwork are simulated by using the 
fiber beam model described in the first section of this chapter. The choice of 
recurring to a beam element to model eccentrically loaded masonry prisms is 
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supported by the consideration that the cross-section remains substantially 
plane, as it is found in experimental tests (Figures 2.48 and 2.49). 

The constitutive law assigned to the fibers is Masonry01, which 
accurately describes the effective response of the material needing a the same 
time a lower computational effort than Masonry02; its parameters are those 
collected in Table 3.3 and their values are determined on the base of centered 
compression experiments. The capability of the model to predict both failure 
conditions and whole response curve of masonry prisms under compression 
and bending is investigated. 

The model is drawn in Figure 3.14: the central beam represents the 
specimen and the rigid links on both ends represent the steel I-beam plates by 
means of which the load is applied, so as to take into account the second 
order effects developing during the tests. Moreover, in order to reproduce the 
effective experimental conditions, two elasto-plastic no-tensile resisting 
elements are also included between the links and the beam, to simulate the 
detachment of the plate at the tensile edge of the specimen and the crushing 
of mortar at the compressed one. The calibration of these elasto-plastic 
elements is carried out on the base of displacement data acquired by 10mm 
transducers set up for the purpose on S-E9 tests (Figures 2.30 and 2.33). 
Analyses are carried out through software OpenSees under displacement 
control; a corotational reference transformation rule and an energy increment-
based convergence criterion are assumed. 
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Figure 3.14. Schematic illustration of brickwork specimen and of the fiber 

beam model in the initial and deformed configurations. 
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3.3.1. Failure criterion 

For the purpose of defining the strength domain of brickwork, the 
normalized plane M/M0 - F/F0 is used, where F0 = fM B d, and M0 = F0 B/4, 
being B and d the specimen width and depth, respectively, and fM the average 
experimental compressive strength. The normalization permits a comparison 
of the results of different specimen types in the same graph, as shown in 
Figure 3.15 where the experimental data are plotted together with those 
presented in (Brencich and de Felice, 2009). Numerical predictions are 
obtained for compressive strength (fcp) equal to 0.9  1.1 fM, thus taking into 
account the intrinsic uncertainty in its estimate (Brencich et al., 2007). It is 
seen from the graph that the axial force-bending moment interaction can be 
predicted with a good approximation; anyway, some experimental points lie 
out of the region delimited by the numerical curves, which could be ascribed 
to some discrepancies between effective and expected eccentricities. 
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Figure 3.15. Strength domains of brickwork under eccentric loading according 

to the numerical model and corresponding experimental data. 

The peak values of the experimental bending moment are collected in 
Table 3.5 together with the ones estimated by the numerical model (M0

num) 
and the error in the prediction, expressed as the ratio between laboratory data 
and finite element results. The mismatch is always lower than 8% except for 
S-C specimen type. 
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Specimen e' 
[mm] 

u' 
[mm] 

Experimental Maximum 
Bending Moment 

M0
 [kNm] 

Numerical 
Maximum 
Bending 
Moment 

M0
num [kNm] 

Numerical/ 
Experimental 

Ratio 
M0

num / M0 
(average) 

Specimen 
1 

Specimen 
2 

S-C 30 40 1.51 2.26 2.13 +13.0% 
S-CG 30 40 1.72 1.62 1.71 +2.4% 

S-E5 

40 100 5.48 5.85 5.53 -2.3% 
60 80 6.92 7.04 6.79 -2.7% 
80 60 7.07 - 6.82 -3.5% 

100 40 3.85 3.79 3.54 -7.3% 

S-E9 70 140 13.13 14.36 14.12 +2.3% 
110 100 15.37 15.67 14.31 -7.8% 

Table 3.5. Comparison between experimental and numerical results. 

3.3.2. Overall monotonic response curve 

Displacement controlled analyses allow the whole force-displacement and 
bending moment-curvature behaviour of brickwork under eccentric loading 
to be simulated. Figures 3.16−3.20 show the numerical estimate compared to 
the experimental results: Force-Displacement and Bending Moment-
Curvature diagrams are plotted together with Eccentricity-Displacement 
graph; the latter represents the progressive increase of eccentricity (e) from 
the initial value (e′), due to second order effects induced by the rotation of 
end plates. Second order effects are considered in the model by means of a 
corotational geometric transformation. The comparison reveals a good 
agreement between numerical simulations and experiments for specimen 
types S-C, S-CG, S-E5, both in ascending and softening branches, with a 
slight overestimate of the post-peak strength. A higher discrepancy appears 
for S-E9 specimen type, with eccentricity e'=110mm (Figure 3.22), where the 
finite element predictions overestimate force and bending moment capacity 
and are not able to follow the rapidly descending softening branch. Probably, 
one of the reasons for this mismatch lies in the lack of fit between model 
estimate of the second order eccentricity e'' and of the corresponding 
experimental value; such a discrepancy is due to the difficulty in modelling 
the mortar layers in contact with the loading plates, where severe crushing 
takes place during the tests. As shown in Figure 3.22, a slight underestimate 
of e'' in the softening phase may induce a strong overestimate of the 
corresponding force and moment predictions. It should be considered also 
that, in the softening phase, the plane section assumption is no longer ensured 
(Figure 2.49) and therefore a beam model is less reliable. 
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Figure 3.16. Experimental results (solid blue lines) and fiber beam model 
simulation (dotted red line) of eccentric (e'=30mm) axial load tests on S-C 

(left) and S-CG (right) masonry specimens. 
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Figure 3.17. Experimental results (solid blue lines) and fiber beam model 
simulation (dotted red line) of eccentric axial load tests on S-E5 masonry 

specimens: e'=40mm (left) and e'=60mm (right). 
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Figure 3.18. Experimental results (solid blue lines) and fiber beam model 
simulation (dotted red line) of eccentric axial load tests on S-E5 masonry 

specimens: e'=80mm (left) and e'=100mm (right). 
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Figure 3.19. Experimental results (solid blue lines) and fiber beam model 
simulation (dotted red line) of eccentric axial load tests on S-E9 masonry 

specimens: e'=70mm (left) and e'=110mm (right). 
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3.3.3. Cyclic behaviour 

The comparison between experimental and numerical curves proves the 
capability of the fiber beam model and of Masonry01 relation to simulate the 
cyclic response of brickwork. The M- response of an S-E5 sample with 
e′=40mm is represented, by way of example, in Figure 3.20, together with the 
finite element prediction. A satisfactory agreement for what concerns the 
unloading-reloading phases is found, even if a certain underestimate of the 
unloading and reloading stiffness values is observed, especially in the 
ascending branch. 
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Figure 3.20. Experimental result (solid blue line) and fiber beam model 
simulation (dotted red line) of a cyclic eccentric axial load tests on a masonry 

specimen (e'=60mm; specimen type: S-E5). 

Concluding, the proposed modelling approach provides an adequate 
prediction of the effective non-linear response of a brickwork element under 
compression and bending, also when unloading-reloading cycles occur, 
offering, at the same time, a good compromise between accuracy and 
simplicity. 

It proves to yield a good description of the failure condition, especially 
when hinge mechanism and material crushing occur at the same time, unlike 
the classical elasto-plastic or elasto-brittle models, traditionally adopted for 
the structural analysis of masonry pillars and arches. 
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4. Load-carrying capability of 
masonry bridges 

4.1. State-of-the-art 

In the past, the design of masonry bridges was based on simplified 
methods, adopted for the dimensioning of the main structural elements like 
vaults and pillars. Traditional building rules are illustrated in several 
theoretical-practical treatises and manuals of XVIII, XIX and XX Centuries 
(Gautier, 1716; Belidor, 1729; Perronet, 1788; Rondelet, 1802; Gauthey, 
1809; Mery, 1840; Curioni, 1865; Dupuit, 1870; Auric, 1911; Séjourné, 
1913; Jorini, 1918; Breymann, 1926; Campanella, 1928), dating from 80 to 
almost 300 years ago, as well as in old design instructions such as (Ferrovie 
dello Stato, 1907) that is the first Italian National Technical Code issued by 
the Italian Railway Institution. In some cases, empirical relations (Tables 
4.1−4.2.) were used, based on experience or practical optimization of 
previous formula (Brencich and Morbiducci, 2007; Oliveira et al., 2010). 
Otherwise, graphic statics was employed for deriving the thrust line in the 
arch (Figures 4.1−4.2).  

It is now necessary, and of great interest as well, to assess the safety level 
of existing masonry bridges towards actual traffic loads by means of the tools 
available at present time. Several alternative approaches have been proposed 
in the last decades for the evaluation of the load-carrying capability (Huges 
and Blackler, 1997), involving different degrees of complexity.  

Two of the most widely used empirical methodologies are the MEXE and 
the SMART methods. The Modified Military Engineering Experimental 
Establishment (MEXE) Method (UK Department of Transport, 1997; Wang 
et al., 2010) was proposed in 1930s, used during the Second World War to 
quickly classify bridges according to their capability to carry military 
vehicles, and then modified several times up to the current version that is 
recommended by the Department of Transport of UK. The SMART 
(Sustainable Masonry Arch Resistance Technique) Method (Melbourne et al., 
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2007) is anonther expeditious procedure that provides an estimate of long-
term service life and permissible loading limits. 

Limit analysis-based methods, deriving from Heyman’s studies on the 
yield design of arches (Heyman, 1966; 1982), are widely adopted for the 
structural analysis of masonry bridges. Assuming that the material has 
infinite compressive strength and no tensile resistance, and that sliding 
between voussoirs cannot occur, the safety assessment becomes a pure 
geometrical matter requiring the load thrust line to be anywhere within the 
arch profile; the collapse multiplier, defined as the live load resultant divided 
by the dead load, that turns the arch into a mechanism is generally found 
through an iterative minimization procedure. Simplicity and speed have made 
limit analysis-based approaches suitable for a preliminary estimate of the 
load-carrying capability of masonry arches and multi-span bridges; some 
examples are presented, among others, in (Harvey, 1988; Gilbert and 
Melbourne, 1994; Clemente, et al., 1995. Boothby, 1997). In order to 
overpass the most important limit of the yield design, that is the assumption 
of infinite crushing strength of the material, an adequate reduction of the 
effective thickness of the arch cross-section can be assumed (Clemente et al., 
2010).  

Some applications to masonry arches of the discrete element method 
(DEM) have been proposed (Lemos, 2007); anyway, this approach is suitable 
for small bridges made of a limited number of stones, like, for example, 
ancient roman arches; in this case the faithful reproduction of the single units 
and joints is possible, while a continuum approach with finite elements could 
be considered conceptually wrong, or, at least, should take into account the 
representation of the heterogeneities at the micro-scale and the opening of 
cracks by means of mesh updating procedures. Anyway, the use of such 
micromodels has generally been restricted to the study of small portions or 
isolated parts of masonry structures and mainly aimed at the calibration of 
simpler models to be subsequently adopted for the whole construction, as in 
(Page, 1978; Ali and Page, 1988; Lourenço, 1994).  

On the contrary, a homogenized approach is preferable when large 
structures have to be analyzed: the representation of the single units and 
joints is not necessary and it would rather entail a heavy modelling and 
computational effort. 

Incremental finite element analysis with 1-D models has proved to be an 
efficient approach for the assessment of the load-carrying capability of 
masonry arches and, even more, of multi-span bridges. Applications have 
been presented in (Molins and Roca, 1998; Boothby, 2001; Brencich and De 
Francesco, 2004a; 2004b; Brencich et al., 2004; de Felice, 2009), in which 
different material constitutive laws, descriptions of the effect of spandrel 
walls and backing, stress distribution criteria within the fill soil, procedures 
for the identification of collapse mechanisms, crack pattern and compressive 
stresses in the vaults have been proposed, and several real cases analyzed. 
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Some of those case studies are existing bridges; in this case the uncertainties 
in the material properties have often to be faced, and one possibility is to treat 
them as probabilistic variables, as it is done in (Brencich et al., 2007), where 
the load-carrying capability of an existing bridge is assessed assuming a 
stochastic distribution for masonry compressive strength. 

Finally, as an alternative to finite element and distinct element methods, 
discontinuous deformation analysis (DDA) can be used; it is based on an 
assumed deformation field within distinct domains and a rigorous imposition 
of contact constraints (Shi, 1988), and has been applied to stone arches in 
(Ma et al., 1995) to represent the possibility of sliding between blocks.  

The wider and wider space devoted to experimental investigation 
activities also witnesses the great interest of the scientific community in a 
deeper knowledge of masonry bridges. Tests have been carried out on scale 
bridge specimens (Melbourne and Wagstaff, 1993; Prentice and Ponniah, 
1994; Robinson et al., 1997; Fanning and Boothby, 2001; Fanning et al., 
2005; Melbourne and Tomor, 2006; Gilbert et al., 2007b) as well as on real 
bridges under traffic loads (Huges and Pritchard, 1998) or up to collapse 
when destined to demolition (Page, 1987; Léon and Espejo, 2007). The 
contribution of spandrel walls and fill soil, or the response to exceptional 
loads such as impacts (Lourenço et al., 2010), are observed, and acquired 
data are mainly used to calibrate numerical models. In other cases, innovative 
techniques are developed to determine the bridge actual stress and damage 
conditions and predict the life expectancy, on the base of acoustic emissions 
(Tomor and Melbourne, 2007) or Moiré photography (Harvey et al., 2001). 

Recently, refined modelling strategies have been proposed to simulate the 
interaction between vaults, spandrels and fill, in which the explicit detailed 
representation of all structural and non-structural elements is made by using 
2-D or 3-D finite elements (Fanning and Boothby, 2001; Fanning et al., 2005; 
Harvey et al., 2005; Cavicchi and Gambarotta, 2005; 2007; Gilbert et al., 
2007a; Domède and Sellier, 2010). These approaches present some 
difficulties associated to the determination of the mechanical parameters, 
towards which a strong sensitivity is often found; moreover, high 
computational efforts are needed, especially for multi-span bridges. 

Within the field of structural analysis of masonry bridges, greater and 
greater attention has been devoted in the last years to historic constructions; 
several applications are strictly connected to the safety assessment of in 
service bridges under exercise loads, as well as to the strengthening, 
retrofitting and repairing (Melbourne and Tomor, 2004; Léon et al., 2004; 
Brookes, 2008; Oliveira et al., 2010; Zheng et al., 2010), including, among 
others, applications of externally bonded surface reinforcements (Valluzzi et 
al., 2001; Foraboschi, 2004; Drosopoulos et al., 2007; De Lorenzis et al., 
2007b) and of non-invasive techniques (Brookes, 2008). 

At the same time, wide space has been devoted to the knowledge and 
valorization of historic heritage, deepening or simply collecting and 
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rediscovering historic design rules (Brencich and Morbiducci, 2007) and 
construction technologies (Brencich and Colla, 2002), or surveying the most 
recurrent typologies and geometrical properties of ancient bridges in a 
particular geographic area (Oliveira et al., 2010).  

 

 Table 4.1. Historical empirical rules for the crown arch thickness from 
different authors (brickwork arches only). 

s: thickness of the arch crown; S: span; R: radius; a: Skewback angle. 

 
 
 
 
 

Date Author Deep arch Shallow arch 
1716 Gautier s = 0.32 + S/15 − 
1788 Perronet s = 0.325 + 0.035S s = 0.325 + 0.0694R 
1809 Gauthey s = 0.33 + S/48 

(S < 16m) 
− 

  s = S/24 
(16m ≤ S < 32m) 

− 

  s = 0.67 + S/48 
(S > 32m) 

− 

1809 Sganzin s = 0.325 + 0.03472S − 
1845 Déjardin s = 0.30 + 0.045S s = 0.30 + 0.025S 
1854 L’Éveillé s = 0.333 + 0.033S s = 0.33 + 0.033 S  
1855 Lesguillier s = 0.10 + 0.20 S  s = 0.10 + 0.20 S  
1862 Rankine s = 0.19 R  − 

1865 Curioni s = 0.24 + 0.05S s = 0.24 + 0.07R 
(α < 45°) 

   s = 0.24 + 0.05R 
(α < 60°) 

1870 Dupuit s = 0.20 S  s = 0.15 S  
1885 Croizette-Desnoyers s = 0.15 + 0.20 R  − 

XIX Cent. Udine-Pontebba railway s = (1 + 0.10S)/3 (1 + 0.20R)/3 
1914 Séjourné s = 0.15 + 0.15 S   

1926 Breymann 2 brick heads (24cm) 
(S < 1.75m) 

1 brick head more 
than for deep arches 

  3 brick heads (36cm) 
(2m < S < 3m) 

 

  4 brick heads (48cm) 
(3.5m < S < 5.75m) 

 

  5 brick heads (60cm) 
(6m < S < 8.5m) 

 

  s =  S/15  S/12 
(S > 8.5m) 
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Year Author Pier thickness 
1684 Blondel S/4 ≤ P ≤ S/3 

(Shallow arches) 
  P = S/4 

(Deep arches) 
1716 Gautier P = S/5 
1788 Perronet P = 2.25s 

XIX Cent. German engineers P = 0.292 + 2s 
1881 Rofflaen P = 2.5s 

(10m ≤ S) 
  P = 3.5s 

(10m ≤ S) 
1914 Séjourné S/10 ≤ P ≤ S/8 

Table 4.2. Historic empirical rules for the top thickness of the pier from 
different authors. 

s: thickness of the arch crown; S: span; P: thickness of the pier top section. 

 
Figure 4.1. Mery’s Method for the design of an arch (From Jorini, 1918). 
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Figure 4.2. Empirical relations for the dimensioning of the structural elements 

of a bridge (From Ferrovie dello Stato, 1907). 
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In this chapter, an approach for the evaluation of the load-carrying 
capability of masonry bridges is proposed, which makes use of the fiber 
beam element presented in the previous chapter to obtain a simple but 
reliable representation of the overall structural response. Most of the main 
features related to the mechanical behaviour of a multi-span masonry bridge 
are taken into account, like the effective material properties (including pre-
peak non-linearities and post-peak softening response), the complex 
interagency of axial force, bending moment and curvature in the cross-
section of vaults and piers and, finally, the interaction between arches and 
piers as well as between adjacent spans. On the other hand, the use of 1-D 
finite elements ensures a limited computational effort, making the proposed 
strategy suitable for practical applications.  

Aiming at validating the fiber beam approach, the comparison with an 
experimental test on a large-scale bridge model performed in Bolton Institute 
(Melbourne et al., 1997) is made and the correspondence between limit 
analysis and fiber beam modelling, under the same constitutive assumptions, 
is also verified. The load-carrying capability of two existing Italian rail 
viaducts is assessed investigating the effect of material properties on overall 
safety level to underline to what extent a yield design-based method can be 
considered reliable. The collapse mechanism and expected damages are also 
identified. Finally, some considerations on the safety under rail traffic loads 
are illustrated with reference to a sample of twelve Italian large-span masonry 
bridges of different typologies. 

4.2. Modelling masonry bridges by means of 
fiber beam elements 

The proposed modelling strategy for the structural analysis of multi-span 
masonry bridges makes use of beam elements with fiber cross-section, as it is 
represented in Figure 4.3; the whole model can be defined in a 2-D or in a 3-
D domain to simulate both in-plane and out-of-plane behaviours. 

The vaults are described as segmental arches made of rectilinear beam 
elements, the piers simply as 1-D columns; the tapering of vaults and pillars, 
when present, is represented in a discrete way. The connection between two 
adjacent arches and the pier on which they are built on is modelled by rigid 
links to take into account the effective relative positions of their central axes. 
Generally, no shear deformation is considered for the vault, while it is 
included in the pier properties to avoid an overestimate of the effective 
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stiffness, especially for squat piers. The discretization of the cross-section 
into fibers, beyond the advantages in deriving the global section force-
deformation law by means of the uniaxial material behaviour, already 
discussed in the previous chapter, also allows the presence of different 
materials to be reproduced, as it may happen for the piers. In fact they were 
often built with regular squared stones in the external leaf, while the internal 
core is made of rubble masonry with poor mechanical properties. 

Non-linear beam elements

Non-linear
truss elements

Rigid links
 

Figure 4.3. Structural elements of a masonry bridge modelled through 1-D 
finite elements. 

The number of beam elements and of fibers in the cross-section is 
determined through a preliminary mesh validation. A good compromise is 
pursued between robustness and accuracy on the one hand, and 
computational sustainability and modelling simplicity on the other hand. 

First of all, sensitivity analyses are performed on two extremely simple 
cases: a beam subjected to uniform bending moment and a single arch under 
vertical load concentrated in the key node. Two different materials are 
considered: the first one has infinite strength and linear elastic behaviour in 
compression, and no tensile resistance (ENT constitutive model), while the 
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second one is Masonry01 relation, defined and calibrated in the previous 
chapter to represent the effective mechanical response of brickwork under 
compression. Analyses are carried out under displacement control until 
convergence is achieved, with a corotational transformation criterion to 
account for second order effects. The resulting curves are the moment-
curvature response for the beam, and the load-displacement response referred 
to the crown section for the arch; they are reported in Figure 4.4. It is seen 
that, apart from the cases in which a very few number of beams or fibers is 
chosen, no significant variation in the shape of the response curves is found. 
Nevertheless, a strong dependence is obtained in terms of numerical 
robustness; instabilities arise for very high curvature values (the last part of 
the softening branch) in the beam, but not in the arch, where the loss of 
convergence may also occur in the ascending branch of the load-
displacement curve. Finally, it has to be noted that an increase in the number 
of elements in the arch is associated to a worse numerical stability. The best 
choice, in this case, appears to be 20 beam elements and 100 fibers; anyway, 
analogous specific sensitivity analyses are carried out to validate the mesh of 
all finite element models used for the numerical simulations illustrated later 
on. 

It is well-known that, when dealing with unreinforced masonry structures, 
the softening local behaviour of all the elements results in a softening overall 
structural response, which is very difficult to simulate even if a displacement 
control procedure is used (Taucer et al., 1991). In the cases considered in the 
present work, convergence is found to be not always satisfactory, which has 
to be attributed to the steep softening branch of assumed constitutive 
relations. 

Passing to the other structural elements, the backing is modelled by using 
horizontal truss elements having the same depth of the vault and connecting 
corresponding nodes of adjacent arches up to the appropriate height. It has to 
be pointed out that the interaction between adjoining vaults strongly depends 
on the height of the backing, which allows the activation of a multiple arch 
mechanism. Great attention has to be paid to original drawings and 
documents to check the effective dimensions of building details. Similarly, 
the abutments are described through an adequate number of horizontal truss 
elements, connecting the nodes of the lateral vault to as many perfectly fixed 
nodes. This constraint condition is based on the assumption that the 
abutments are stiff and no foundation settlements occur. 

Spandrel walls and fill soil are not explicitly included in the model, even 
if their self-weight is always considered. Moreover, the diffusion of the load 
from the trampling level to the arch extrados is taken into account by 
assuming an adequate value of the diffusion angle d depending on the fill 
mechanical properties (Figure 4.5).  
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Figure 4.4. Sensitivity analyses on a beam under uniform bending moment 
(up) and on a single arch under vertical load concentrated in the crown section 
(down), for the identification of the adequate number of beam elements (left 
side graphs) and of fibers in the cross-section (right side graphs), considering 

an elastic-no tensile resistant material (ENT, blue curves) and Masonry01 
constitutive law (red curves). 

A linear or corotational coordinate transformation rule is adopted, 
depending on the specific requirements of the considered case. The former is 
chosen any time that second order effects are assumed to be substantially 
negligible; moreover, it ensures better performances of the numerical model 
in terms of both computational effort and convergence stability.  
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Figure 4.5. Diffusion of the load from the trampling level to the arch extrados 
and identification of the loaded nodes. 

4.3. Comparison with experimental results 

Aiming at validating the modelling strategy with fiber beams, an 
experimental test is simulated. The specimen is a large scale model (Figure 
4.6) made of three shallow arches and two squat piers (namely North Pier and 
South Pier) tested up to collapse in Bolton Institute (Melbourne et al., 1997). 
The main geometric and mechanical properties of the bridge are collected in 
Table 4.3. The spandrel walls are detached from the arch barrels of the three 
vaults (Figure 4.7) but are built on the same piers and abutments supporting 
them, so that a limited (even if not completely negligible) interaction between 
arches and spandrels occurs.  

Actually, the experimental campaign described in (Melbourne et al., 1997) 
totally includes three bridges, and the one considered within this Thesis is 
named Bridge #2 in the cited paper. The other two specimens present 
attached spandrel walls so that a more refined strategy should be used to 
model them, including their explicit representation by using, for example, 2-
D elements.  

During the test, the load is applied by means of a 420mm wide and 2.6m 
long concrete beam, positioned transversally at the quarter point of the 
central span (750mm from the crown). The force and the displacements of 
the loaded arch and of the two piers are recorded; the load values 
corresponding to the occurrence of cracks are also registered. The observed 
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failure mode is a hinged mechanism, as it is expected when the material is 
very strong and the span is relatively short. 

 
Figure 4.6. Bolton Institute experimental model. 

Span 3.00 m 
Rise 0.75 m 

Span/rise ratio 4:1 
Arch thickness 0.215 m 

Arch depth 2.88 m 
Pier height 1.50 m 

Pier thickness 0.44 m 
Brickwork unit weight 22.4 kN/m3 

Brickwork compressive strength 26.8 MPa 
Brickwork initial tangent elastic modulus 16.2 GPa 

Fill unit weight 22.2 kN/m3 

 Table 4.3. Geometric and mechanical characteristics of Bolton Institute 
(Melbourne et al., 1997) experimental model. 

To perform numerical simulations, the bridge is modelled using 50 fiber 
beam elements for each arch and 20 for each pier (Figure 4.8). The section of 
all the beams is subdivided into 751 fibers; Masonry01 constitutive relation 
is assigned to all of them and a ductility =c0/cu=3 is assumed. Anyway, it 
should be noted that, because of the high material crushing strength, 
combined with the small dimensions of the bridge, the local resistance does 
not significantly affect the overall load-carrying capability and the failure 
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mechanism; therefore, the classical assumption of infinite compressive 
resistance would lead to comparable results.  

 
Figure 4.7. Geometry of the bridge (distances in millimeters). 

The fill is not explicitly modelled but its weight and its effect in terms of 
load spreading are taken into account; the distribution of the load from the 
trampling level to the underlying arch is governed by a diffusion angle d 
assumed to be equal to 35°+35°; the loaded nodes of the arch are hence 
identified as Figure 4.8 shows. Neither the spandrel walls are included in the 
model, while the backing is just not present in the experimental specimen. 

The model is defined into a 2-D domain (this is the reason why the 
discretization of the cross-section into fibers is in one direction only) and a 
corotational reference transformation rule is adopted; the analysis is 
performed under displacement control to get the overall softening response of 
the bridge; the convergence test is based on the energy increment (3.37). 
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Figure 4.8. Numerical model with fiber beam elements: position of the 

external load and identification of the loaded nodes. 

The simulation provides a load-carrying capability of 325kN, which is 
slightly higher than the failure load of 320kN given by the test. The entire 
load-displacement numerical response is compared to the experimental one in 
Figure 4.9: the vertical displacement of the node under the point of 
application of the external load is plotted in the left side graph, while the 
horizontal displacement of the top of the two piers is represented in the right 
side one. On the whole, a good agreement is found despite a slight mismatch 
in the phase of onset of strongly non-linear response (occurring at about 60% 
of the maximum load), in which the numerical model appears stiffer than the 
physical one. A marked difference is also found in the displacement of the 
North Pier which is the one near to the external load: in the experimental test 
a significant movement is measured while it is nearly not mobilized 
according to the simulation. This difference, that is responsible for the higher 
stiffness of the fiber beam model, is due to the fact that the spandrel wall is 
built on the pier, producing de facto an interaction between arches and piers 
that is not present in the simulation. 

The collapse mechanism, the position of the plastic hinges, the order in 
which they develop and the corresponding load values are also well predicted 
(Figure 4.10). The average curvature along each beam element is derived 
starting from the coordinates (x1, y1 and x2,y2) and the rotations (1, 2) of its 
end nodes, referred to the global reference system, in the deformed 
configuration, as it is stated in expression (4.1) in which c

1 and c
2 are the 

rotations with respect to the chord and are considered to remove the rigid 
rotation of the beam (Figure 4.11). By doing so, the most deformed sections 
of the bridge are identified (Figure 4.12); the position of the plastic hinges is 
evident even if the continuum nature of the finite element method results in a 
certain spreading of the deformation and in the formation of distributed 
plastic hinges. Within this procedure, a cross-section is considered to be 
turned into a plastic hinge when its partialization level becomes higher than 
0.5, i.e. the neutral axis crosses its center of gravity. 
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Figure 4.9. Comparison between numerical and experimental results: load vs. 
crown displacement curve (left) and load vs. pier displacement curves (right). 
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Figure 4.10. Failure mode: comparison between experimental (up) and 
numerical (down) models. Roman numbers represent the sequence of 

developing of plastic hinges; force values indicate the corresponding applied 
load. 
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Figure 4.11. Undeformed and deformed beam element. 
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Figure 4.12. Curvature of the beam elements in the numerical model for the 

identification of the plastic hinges and comparison with the experimental 
failure mode. 

The comparisons between numerical and experimental results give a 
confirmation of the good capability of a fiber beam approach in simulating 
the mechanical response of a multi-span masonry bridge, including not only 
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its ultimate resistance but also its entire response and the progressive 
development of damage.  

4.4. Load-carrying capability of Ronciglione 
Viaduct 

4.4.1. Description of the bridge 

Roma-Viterbo rail line connects the stations of Roma Trastevere and 
Viterbo Porta Fiorentina and has a total length of 95.3km (Figure 4.13). It 
was designed in 1889 and built between 1890 and 1894. Because of the 
uneven ground, the line presents a large number of trenches, surveys, 
galleries, and viaducts with spans ranging from 10m to 25m.  

 

Ronciglione Viaduct

 

Figure 4.13. Position of Ronciglione Viaduct in the Italian Rail Network. 

Ronciglione Viaduct is close to the final station of the branch going from 
Capranica to Ronciglione and is the most important work of the whole line; it 
is not in service any more but is still in good maintaining conditions. The 
bridge has a rectilinear layout and is made of seven circular barrel vaults and 
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six piers with a maximum height of about 35m, giving the construction a very 
slender aspect (Figures 4.14−4.15). 

The barrel vaults are built with clay bricks realized in Nepi kiln (situated 
near Rome) and having dimensions 28146cm3; hydraulic mortar made 
with lime and pozzolana without cement was used; it is analogous to the 
mortar described in the second chapter of the Thesis. The arches have 18m 
span, 9m rise, 1.07m thickness and 4.60m depth (Figure 4.16; Table 4.4). 

 
Figure 4.14. Ronciglione Viaduct. 

Figure 4.15. Ronciglione viaduct: longitudinal view (distances in meters). 

The bridge is founded on flint and pozzolana concrete plinths based on 
volcanic tuff soil. The masonry of the piers is in rough tuff stone with 
squared units on the external face; there are corners and horizontal chains 
every 3m made of squared flint stones (Figure 4.16−4.17). All the piers have 
a vertical slope of 3.5% in longitudinal direction and varying from 5% and 
6% in transversal one. The second and the fifth piers are provided with 
buttresses in transversal direction and are dimensioned 1.50m larger in 
longitudinal one to be able to carry asymmetric arch thrusts during the 
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buildings phases; this device allowed the vaults to be made in three 
subsequent steps making use of the same wood centrings (Table 4.5). 

The spandrel walls are 75cm thick and 11m high from the springers and 
are made of regular courses of tuff squared stones; finally, the backing height 
is about 4.70m. 

 
Barrel vaults span 18.00 m 
Barrel vaults rise 9.00 m 

Span/rise ratio 2:1 
Barrel vaults thickness 1.07 m 

Barrel vaults depth 4.60 m 
Fill height in crown 0.93 m 

Backing height 4.76 m 
Spandrel walls height 11.00 m 

Brickwork specific weight 16.5 kN/m3 
Tuff masonry specific weight 15 kN/m3 

Fill specific weight 15 kN/m3 

Table 4.4. Ronciglione Viaduct geometric and mechanical characteristics. 

Pier  Height Top 
thickness 

Bottom 
thickness 

Top  
depth 

Bottom 
depth 

#1 15.71 m 3.00 m 4.10 m 4.6 m 5.38 m 
#2 23.40 m 4.50 m 5.90 m 5.8 m 6.97 m 
#3 35.36 m 3.00 m 5.47 m 4.6 m 6.36 m 
#4 35.31 m 3.00 m 5.47 m 4.6 m 6.36 m 
#5 27.28 m 4.50 m 6.13 m 5.8 m 7.16 m 
#6 13.70 m 3.00 m 3.96 m 4.6 m 5.28 m 

Table 4.5. Ronciglione Viaduct geometric characteristics: piers. 

  

Figure 4.16. Vaults and spandrel walls (left) and detail of brick arrangement in 
the arches (right). 
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Figure 4.17. Ordinary piers and piers with buttresses. 
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The geometric dimensions of the structural elements and the main issues 
of the building phases and techniques are derived from available original 
drawings and documents (Figures 4.18−4.19) published by Società italiana 
per le strade ferrate del Mediterraneo (Italian society for Mediterranean 
railways). 

 

 

 

 

 

 

 

 
 

Figure 4.18. Original drawings from (Società italiana per le strade ferrate del 
Mediterraneo, 1894): transversal sections at the first (left) and at the central 

(right) span of Ronciglione Viaduct. 
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Figure 4.19. Original drawing from (Società italiana per le strade ferrate del 

Mediterraneo, 1894): bridge under construction. 

4.4.2. Fiber beam-based modelling and comparison with limit 
analysis 

Ronciglione viaduct is modelled by using 100 fiber beams for each arch 
and 50 for each pier, in both cases the cross-section is discretized into 1001 
fibers. The mesh is chosen after performing adequate sensitivity analyses, 
and ensures good numerical stability and result reliability. The backing and 
the abutments are described by using 17 truss elements. The tapering of the 
pillars in both longitudinal and transversal directions is included in the 
model, while no shear deformation is considered because, due to the pier 
height, it is assumed to play a negligible role. Either spandrel walls or fill soil 
are modelled in terms of stiffness and strength, but their self-weight is 
included and an angle d=40°+40° is assumed to take into account the load 
distribution within the soil. The numerical model is defined in a 2-D domain 
and a linear geometric transformation is adopted, since it requires a lower 
computational effort and second order effects are assumed to play a 
negligible role; the incremental analyses are carried out under displacement 
control and the convergence test is based on the energy increment (3.37). 

First of all, the load-carrying capability of the viaduct is evaluated under 
concentrated travelling load and the results are compared to the ones 
provided by a limit analysis approach performed by using software RING 
(Gilbert, 2005). The same constitutive laws are assumed for the material 
considering either infinite compressive strength (ENT constitutive model) or 
an elasto-plastic behaviour (EP constitutive model) with crushing resistance 
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fcp=7.1MPa and unlimited ductility (Figure 4.20); an elastic modulus 
E=747MPa is assumed in both cases. 
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Figure 4.20. Constitutive relations adopted for load-carrying capability 
analyses on Ronciglione Viaduct: ENT (a), EP (b), Masonry01 (c). 

The load-carrying capability curves are reported in Figure 4.21 showing, 
on the whole, a good agreement between the two approaches; the collapse 
mechanism is also well reproduced (Figure 4.22), even if a lower 
mobilization of the piers results from the mechanism method justifying the 
slight mismatch between the capacities. The plastic hinges can be identified 
by deriving the curvature of the beam elements employed to model the barrel 
vaults (Figure 4.23). 

The weakest section belongs to the central span, built on the highest 
pillars. The asymmetric shape of the mechanism can be attributed to the 
interaction between arches and piers, making the critical position of the 
travelling load to be shifted from the crown of the central span towards its 
right side.  
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Figure 4.21. Load-carrying capability: comparison between fiber beam model and limit 
analysis. 
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Figure 4.22. Collapse mechanism: comparison between fiber beam model and 

limit analysis. 
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Figure 4.23. Collapse mechanism: curvature of the fiber beam elements and 

identification of the plastic hinges. 

4.4.3. Load-carrying capability 

After having checked the agreement between fiber beam model and limit 
analysis with ENT and EP constitutive relations, analyses under concentrated 
travelling load are repeated considering the effective material behaviour, 
described by Masonry01 constitutive law (Figure 4.20). The values assigned 
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to the parameters are those collected in Table 3.3 to fit experimental data, as 
it is discussed in chapters 2 and 3 of the Thesis. The resulting load-carrying 
capability curves are then compared to those provided by ENT and EP 
relations to evaluate the effect of the material properties on the overall 
structural response.  

It is seen from Figure 4.24 that a significant decrease in load-carrying 
capability is found when assuming a constitutive relation with finite 
compressive resistance and limited ductility: the bridge strength when 
provided by the elasto-plastic (EP) and elastic no-tensile resistant (ENT) laws 
results to be overestimated in the order of about 70% and 100%, respectively. 

 
Figure 4.24. Load-carrying capability of Ronciglione Viaduct under 
concentrated travelling load for different material constitutive laws. 

Load-carrying capability analyses are repeated assuming different values 
of the ductility , ranging from 1 (brittle material) to  (plastic material), to 
investigate the influence of the local post-peak behaviour on the overall 
capacity. The resulting curves referred to the central span are reported in the 
left side graph of Figure 4.25, showing evident variations in terms of both 
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ultimate load and weakest section. The increase of  is associated with an 
increase in load-carrying capability, which tends asymptotically to the 
perfectly plastic response (Figure 4.25, right side graph), as found in (de 
Felice, 2009) for the single arch.  
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Figure 4.25. Effect of post peak behaviour; load-carrying capability curves of 
the central span (left) and ultimate resistance vs. =cu/c0 (right). 

When different materials are considered, not only the ultimate travelling 
load of the bridge, but also its position changes: when low ductility values are 
assumed, the crown of the central span turns out to be the critical position 
(73.50m), while with the increase of =cu/c0 the minimum load-carrying 
capability is found for a distance of 74.60m from the left side of the first 
span, coinciding to the one previously provided by limit analysis. Thus, the 
variation in the material properties also results in the modification of the 
failure configuration: a hinge mechanism for ductile material, local crushing 
of the most stressed section for brittle material. When the effective properties 
are considered, these two phenomena are combined, showing that the 
response is intermediate between the limit cases they are related to. 

Such a strong dependence of the constitutive model on the overall limit 
load of an arch is found also in (de Felice, 2009) and in (Brencich and 
Morbiducci, 2007); in the latter paper an elasto-plastic law is assumed with 
limited inelastic strain and a reduction of such a ductility results in lower 
ultimate load.   

The displacement-controlled analysis allows the comparison of the post-
peak behaviour of the bridge when different constitutive assumptions are 
made. The load-displacement curves corresponding to elasto-plastic and 
effective materials (EP and Masonry01 constitutive laws, respectively) are 
plotted in Figure 4.26, in which the crowns of the fourth and fifth spans are 
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considered. A concentrated load is applied in the middle of the former, being 
this loading condition the critical one. The negative displacement of the 
loaded arch corresponds to an upwards movement of the adjacent one 
because of their interaction, favored by the height of the piers allowing large 
displacements and by the presence of the backing. 

The response of the elasto-plastic material appears superimposed to the 
effective one until the load reaches about 1200kN; then a significant 
overestimate of the response is found; besides, after the maximum load is 
reached, at a lowering of the crown of the loaded span of about 85mm, the 
elasto-plastic curve still grows and becomes substantially horizontal only for 
very large displacements. 

In the overall softening branch, numerical instabilities do not allow 
simulations to be performed up to displacement values that are beyond the 
ones represented in the graph (about −135mm for span #4). Anyway, such a 
deformation should be considered to be well beyond the range of practical 
interest. 
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Figure 4.26. Load-displacement response for different material behaviour. 

Once the load-carrying capability analyses are performed under 
concentrated travelling force, the rail traffic load defined by Eurocode 1 
(CEN-EN 1991, 2005) and Italian code (Nuove norme tecniche per le 
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costruzioni, 2008) is considered. It consists of four concentrated forces of 
250kN each, at a distance of 1.60m one from each other. A distributed load 
can also be applied, even if it is not included here and its effect will be 
discussed hereinafter in the present chapter. The comparison between the 
results provided by the different loading conditions (single force, four forces) 
is shown in Figure 4.27 underlining how a wider spreading results in a higher 
capacity; in fact, it is well-known that a distributed load allows the arch to 
behave more efficaciously. A measure of the bridge safety level is defined as 
the ratio between the ultimate load and the resultant of the design load 
(1000kN); in the present case a safety factor (SF) equal to 2.7 is found. 
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Figure 4.27. Load-carrying capability of Ronciglione Viaduct under concentrated travelling 
load and rail traffic load. 

The collapse configuration under design traffic load is represented in 
Figure 4.28, where the cross-sections whose stress field is monitored during 
the analysis are also indicated: the crown and the most stressed sections in 
the haunches of the loaded span, the top and the base of the third and of the 
fourth piers (on which the loaded span in built on), and, finally, the most 
stressed sections in the haunches and close to the crown of the adjacent spans 
(the third and the fifth ones), which are symmetrically disposed. 
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Figure 4.28. Collapse configuration under rail traffic load and monitored 

cross-sections. 
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Figures 4.29−4.31 reports their stress field under three different load 
conditions: the self-weight only, the resultant rail design load (1000kN) and 
the ultimate load. In the last two cases, the rail traffic load that should be 
adopted for design and verifications is applied in the middle of the central 
span.  

It has to be said that the initial stress state does not intend to represent the 
exact stress field in the bridge, which depends on a wide number of variables 
that cannot be considered within this approach. It just means to indentify the 
order of magnitude of the internal forces and the reference stress state for the 
following application of exercise loads.   
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Figure 4.29. Stress field in the cross-section at the crown (up) and at the 
springers (down) of the central span, under self-weight only, rail load and 

ultimate load. 



 Chapter 4 145 

Stefano De Santis 

-1500 -1000 -500 0 500 1000 1500
0

1

2

3

4

5

6

7

8

Position of the cross-section (+=extrados) [mm]

St
re

ss
 (+

=c
om

pr
es

si
on

) [
M

P
a]

 

 

Permanent load
Design load
Ultimate load

Section 4

Section abscissa [mm]  
-1500 -1000 -500 0 500 1000 1500

0

1

2

3

4

5

6

7

8

Position of the cross-section (+=extrados) [mm]
S

tre
ss

 (+
=c

om
pr

es
si

on
) [

M
Pa

]
 

 

Permanent load
Design load
Ultimate load

Section 5

Section abscissa [mm]  

-2000 -1000 0 1000 2000
0

1

2

3

4

5

6

7

8

Position of the cross-section (+=extrados) [mm]

St
re

ss
 (+

=c
om

pr
es

si
on

) [
M

Pa
]

 

 

Permanent load
Design load
Ultimate load

Section 6

Section abscissa [mm]  
-2000 -1000 0 1000 2000

0

1

2

3

4

5

6

7

8

Position of the cross-section (+=extrados) [mm]

S
tre

ss
 (+

=c
om

pr
es

si
on

) [
M

P
a]

 

 

Permanent load
Design load
Ultimate load

Section 7

Section abscissa [mm]  

Figure 4.30. Stress field in the cross-section at the top (up) and base (down) of 
the third (left) and fourth (right) piers, under self-weight only, rail load and 

ultimate load. 
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Figure 4.31. Stress field in the cross-section at the springer (up) and crown 
(down) of the third (left) and fifth (right) spans under self-weight only, rail 

load and ultimate load. 

It is seen from the graphs that the vaults are still in a substantially elastic 
state under the permanent load; the application of the traffic load produces a 
partialization of some portions of the loaded arch, while under the ultimate 
load the most stressed cross-sections result strongly partialized; the crushing 
resistance (fcp=7.1MPa) is reached in the extrados of the crown and the 
section edge has even exceeded the strain corresponding to such a peak value 
and is in the softening phase. 
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The detected stress field gives useful information on the damage state that 
is expected: a strong partialization reveals the opening of mortar joints, while 
high compressive stresses (reached by the crown in the extrados and the 
springers in the intrados) indicate the possibility of crushing failure and 
expulsion of material. In the present case, a certain damage, mainly 
consisting in the opening of mortar joints, is expected in the central arch 
already under design loads, as it is seen in the graphs relative to the crown 
and to the springer sections (Figure 4.29). 

On the contrary, no partialization is observed in the piers, so no significant 
damage is expected, even if the neutral axis is next to the internal edge at the 
base in the failure condition (Figure 4.30). 

Finally, the spans adjacent to the loaded one show a quite severe expected 
damage consisting in the opening of cracks in the extrados already under the 
design load in the springer sections, while a strong partialization of the crown 
of both the arches is attained under the collapse load; in these latter sections, 
moreover, an inversion of the bending moment is induced by the external 
load (Figure 4.31). Such a result indicates a marked interaction between the 
arches, which could be, as already discussed, attributed to the height of the 
piers allowing large displacements to occur, and to the backing. 

Concluding, the structural response estimated on the base of the effective 
material behaviour results to be intermediate between the one provided by a 
yield-design based method (that implicitly assumes an elasto-plastic material) 
and the one obtained on the base of an elastic-based approach (considering an 
elasto-brittle material). Therefore, traditional assessment methodologies 
based on the assumption of limit analysis may lead to an overestimate of the 
load-carrying capability of a masonry bridge, since the material crushing can 
play a non-negligible role in the overall collapse. At the same time, an elasto-
brittle approach may lead to an underestimate, since it assumes an 
instantaneous crushing failure of the critical section without any progressive 
damage and redistribution of internal stresses. An accurate representation of 
the effective material post-peak behaviour, and its effect on the overall 
response in terms of ultimate strength, failure mechanism, expected damage 
and displacement capacity may become particularly remarkable when a long 
span bridge made of weak masonry is under examination, like the case study 
considered in the present chapter. 

On the other hand, it should be pointed out that the load bearing can 
strongly depend on the possibility of the arches to deform; in fact, a heavy 
dependence of the ultimate load on the pier stiffness is found, at least up to 
when the collapse mechanism involves them (Oliveira et al., 2010); 
moreover, the stiffening contribution of the spandrel walls, together with the 
passive reaction of the fill soil, would make the capacity of the viaduct in 
supporting vertical loads increase. Thus, the load-carrying capability 
provided by the present approach has to be considered as a conservative 
estimate. 
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4.5. Load-carrying capability of Cervo River 
Bridge 

4.5.1. Description of the bridge 

Santhià-Arona rail line was designed in the last years of the XIX Century 
and completed in 1906; it belongs to the international line connecting Briga 
(Switzerland) to Turin (Italy) through Sempione Pass.  

Cervo River Bridge, crossing Cervo Stream, is situated close to Buronzo 
station (Figures 4.32−4.33) and is the most important work of the whole line. 
It has a rectilinear layout and consists of five shallow arches and four squat 
piers (Figure 4.34).   

The barrel vaults are made with bricks and hydraulic mortar; the arches 
have 18m span (S) and 3.60m rise (r), 5:1 span to rise ratio (S/s), 0.95m 
thickness and 5.50m depth (Table 4.6). For their building, embossed 
frameworks were used (Figure 4.35). 

 

Cervo River Bridge

 

Figure 4.32. Position of Cervo River Bridge in the Italian Rail Network. 
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Figure 4.33. Altimetric outline of the first part of Santhià-Arona rail line, with 
the identification of Cervo River Bridge at km 12+500, from (Società italiana 

per le strade ferrate del Mediterraneo, 1906). 

 

 
Figure 4.34. Original drawing from (Società italiana per le strade ferrate del 
Mediterraneo, 1906): longitudinal and upper view of Cervo River Bridge. 

Vaults span 18.00 m 
Vaults rise 3.60 m 

Span/rise ratio 5:1 
Vaults thickness 0.95 m 

Vaults depth 5.50 m 
Fill height in crown 0.76 m 

Backing height 2.6 m 
Spandrel walls height 5.00 m 

Table 4.6. Cervo River Bridge geometric characteristics. 
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Figure 4.35. Original drawing from (Società italiana per le strade ferrate del 

Mediterraneo, 1906): Cervo River Bridge under construction. 

The foundation plinths are made of concrete (realized with gravel and 
sand extracted from local pits) and reach a depth of about 4m under the water 
level; the soil on which they are based consists of gravel and sand. The 
placing of the foundations requested the realization of wood formworks to go 
deep under the river bed. 

The piers are in syenite squared stone masonry, and their height 
(measured from the foundation top to the vault springer) ranges from 5.52m 
to 4.67m (Table 4.7; Figure 4.36). They all have rounded corners and a 
vertical slope of 3% in both longitudinal and transversal directions (Figures 
4.37−4.38). 

The spandrel walls are 1m thick and about 5m high from the springers and 
are made of regular courses of syenite squared stones; according to the 
original drawings (from which the dimensions of the structural elements are 
deduced), the backing height is about 2.60m from the springers. 

 
Pier  Height Top 

thickness 
Bottom 

thickness 
Top  

depth 
Bottom 
depth 

#1 5.52 m 2.60 m 2.93 m 8.43 m 8.60 m 
#2 5.52 m 2.60 m 2.93 m 8.43 m 8.60 m 
#3 4.67 m 2.60 m 2.88 m 8.43 m 8.57 m 
#4 4.67 m 2.60 m 2.88 m 8.43 m 8.57 m 

Table 4.7. Cervo River Bridge geometric characteristics: piers. 
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Figure 4.36. Longitudinal view of Cervo River Bridge (distances in meters). 

 
Figure 4.37. Original drawing from (Società italiana per le strade ferrate del 
Mediterraneo, 1906): transversal section in correspondence of the crown of 

the first span. 
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Figure 4.38. Original drawing from (Società italiana per le strade ferrate del 
Mediterraneo, 1906): transversal section in correspondence of the crown of 

the central span. 

4.5.2. Load-carrying capability 

Similarly to what is done for Ronciglione Viaduct, Cervo River Bridge is 
modelled by using 100 fiber beams for each arch and 30 for each pier, in both 
cases the cross-section is discretized into 1001 fibers. The backing and the 
abutments are described by using 23 truss elements. The tapering of the 
pillars in longitudinal and transversal directions is reproduced in the model 
and, in this case, a shear flexibility is included in the cross-section by 
assuming a stiffness equal to the half of an elastic squat beam having the 
same pillar dimensions. As it is said in the previous chapter, the shear 
deformation is included in the model in the form of an additional bending 
flexibility; the plane section assumption remains satisfied since no sliding 
between fibers is allowed.  

The load-carrying capability is assessed under concentrated travelling load 
and different material constitutive models are considered (Figure 4.20). The 
results of the analyses are similar to those found for Ronciglione Viaduct: a 
strong decrease of the ultimate load is observed when the simplifying 
assumptions of limit analysis (infinite crushing strength and unlimited 
ductility) are removed: an overestimate of about 70% results from the 
employment of a yield design-based analysis approach (EP law), while, if 
even no compressive strength is taken into account (ENT law), the failure 
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load is about 230% of the one corresponding to the effective material 
(Masonry01 law). The critical position of the travelling load (i.e. the one 
corresponding to its minimum value) belongs to the second span that is built 
on highest piers.  

 
Figure 4.39. Load-carrying capability of Cervo River Bridge under 
concentrated travelling load for different material constitutive laws. 

Load-carrying capability analyses under rail traffic load (four 
concentrated forces) are also performed, pointing out the increase in strength 
due to a wider load spread. Moreover, a higher safety factor (SF=6.0) for this 
bridge is found with respect to Ronciglione Viaduct (Figure 4.40), as it has to 
be expected in shallow arch bridges (Brencich and de Francesco, 2004; de 
Felice, 2009). 

Some significant cross-sections are monitored during incremental  
analyses and their stress field is recorded to get information on the expected 
damage. The considered sections are shown in Figure 4.41 where the collapse 
configuration under rail traffic load is also represented (the load is applied in 
the critical position, that is the middle span of the second arch): the crown 
and the springers of the loaded span, the top and the base of the piers it is 
built on (piers #1 and #2) and, finally, the most stressed sections in the 
haunches and close to the crown of the adjacent spans (the first and the third 
ones). It is noteworthy that for the last four cross-sections an unsymmetrical 
choice is done because of the unsymmetrical failure mechanism which is, in 
turn, due to the unsymmetrical boundary conditions of the considered spans. 
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Figure 4.40. Load-carrying capability of Cervo River Bridge under 

concentrated travelling load (dotted line) and rail traffic load (solid line). 

The comparison with Ronciglione Viaduct shows some differences in the 
mechanical response of deep and shallow arch bridges. Firstly, it is seen that 
the crown section of the loaded span results to be entirely compressed under 
the permanent load and partialized already under the design load (Figure 
4.42); the crushing strength of the material is attained and the corresponding 
strain is exceeded before the collapse, when the extrados comes into the 
softening phase. Even if such a behaviour is similar to what is found for the 
previous case study, this time the partialization (and the associated expected 
damage) appears slightly less severe in both design and failure conditions. 

Secondly, the springers result to be less damaged: they are entirely 
reactive under the design load and weakly partialized in the collapse 
condition in which, moreover, the maximum stress attained in the intrados is 
well below the crushing strength. In these sections an inversion of the 
bending moment is induced by the external loads. 

Regarding the monitored piers (#1 and #2), the top of both of them is 
always entirely compressed, the stress results to be definitely low and neither 
the design load induces significant damages (Figure 4.43). On the contrary, 
and differently from the previous case study, a strong partialization of the 
base sections is detected under the collapse load as a consequence of the high 
bending moment resulting from the strong horizontal thrust, as it is typical of 
deep arches.   

Finally, only the haunches of the adjacent spans result to be damaged 
under the collapse load (Figure 4.44); they are entirely compressed in the 
exercise conditions, as well as the crown sections, where, anyway, an 
inversion of the bending moment is evident after the exceeding of the traffic 
load. The comparison with the expected damage in Ronciglione Viaduct 
shows that a lower interaction between adjacent vaults is activated, probably 
because of the limited height of the piers. On the whole, a lower damage is 
associated to the design condition than the one induced by the collapse load, 
which is indeed approximately 6 times higher than the exercise one. 
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Figure 4.41. Figure 4.42. Collapse configuration under rail traffic load and 

monitored cross-sections. 
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Figure 4.43. Stress field in the cross-section at the crown (up) and at the 
springers (down) of the central span, under self-weight only, rail load and 

ultimate load. 
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Figure 4.44. Stress field in the cross-section at the top (up) and base (down) of 
the first (left) and second (right) piers, under self-weight only, rail load and 

ultimate load. 
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Figure 4.45. Stress field in the cross-section at the springing (up) and crown 
(down) of the first (left) and third (right) spans, under self-weight only, rail 

load and ultimate load. 

4.5.3. Safety assessment under rail traffic loads 

As stated previously, the Italian Code (Nuove norme tecniche per le 
costruzioni, 2008) defines a loading scheme to represent normal rail traffic on 
mainline railways, named Load Model (LM) 71. It acknowledges the rail 
traffic action defined by Eurocode 1 (CEN-EN 1991, 2005) and consists in 
four concentrated forces having value of 250kN each, and distance 1.60m 
from each other (intending to represent the axis of the engine), and in a 
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distributed load of 80kN/m, at a distance of 0.80m from the lateral forces, 
representing the wagons (Figure 4.45). The distributed load has to be applied 
for a length so as to produce the worst (less safe) condition. The effect of 
such a distributed load on the load-carrying capability of a multi-span bridge 
is investigated in this section. 

1.6m 1.6m 1.6m 0.8m0.8m

80kN/m
Unlimited length

80kN/m
Unlimited length

250kN 250kN 250kN 250kN

 
Figure 4.46. LM71 rail traffic load as it is defined by the Italian Code. 

Displacement-based analyses are performed under three different loading 
conditions (Figure 4.46): the first one consists of the four concentrated forces 
only (loading condition #1, black) and is the same one assumed in the 
analyses already discussed in the previous paragraphs. In the other two 
loading cases, the distributed load is also included; it is applied on the first 
span only to investigate an unsymmetrical loading pattern (loading condition 
#2, red) and, finally, on both the first and the third spans (loading condition 
#3, blue).  
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Figure 4.47. Rail traffic load: loading conditions. 

The presence of the distributed load is found to lead to a higher ultimate 
load of the bridge, as it is shown in Figure 4.47, representing the load-
displacement curves of the crown of the first three spans. Such an increase is 
due to a sort of a stiffening effect: the first and the third arches tend to move 
upwards when the second span is loaded, but the applied distributed load 
partially prevents or contains such a mechanism. It is seen in the graph that 
the displacement of the lateral spans corresponding to the attainment of the 
maximum load significantly changes; such a variation in the collapse 
mechanism is also represented in Figure 4.48.  

Concluding, the analyses suggest that the only four concentrated forces 
should be considered to assess the load-carrying capability of a rail multi-
span masonry bridge, while the distributed load should be neglected. 
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Figure 4.48. Load-displacement response curves for the different loading 

conditions (black lines: loading condition #1; red lines: loading condition #2: 
blue lines: loading condition #3). 

Loading condition 1

Loading condition 2

Loading condition 3

 
Figure 4.49. Collapse configurations corresponding to different loading 

conditions. 
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4.6. Safety assessment of different typologies of 
Italian large-span rail bridges 

Ten masonry bridges are considered in addition to Ronciglione Viaduct 
and Cervo River Bridge; their safety level towards rail traffic load is assessed 
and their failure mode is detected. The surveyed sample is not so wide to be 
considered exhaustive, but however it is representative of the Italian large 
span-bridges built between about 100 and 160 years ago, also in 
consideration of the analogies they have in common. The bridges are 
collected in Table 4.8 together with the line they belong to and the year of 
construction, ranging from 1857 to 1906; they are also illustrated in Figures 
4.49−4.58 (except for Ronciglione Viaduct and Cervo Rover Bridge, 
illustrated in detail in the previous paragraphs). 

The considered artworks are different in terms of geographical position 
(Figure 4.59) and geometrical characteristics: span (S), rise (r), vault 
thickness (s), number of spans, maximum pier height (HP), as it is reported in 
Table 4.10. The data regarding the arch thickness at the crown are plotted in 
Figure 4.60, superposed to the empirical rules adopted in the past for the 
dimensioning of the vaults (Table 4.1): all the bridges of the sample are 
within the envelope domain, with the only exception of bridge #10 that is just 
above the upper envelope limit. In Figure 4.61 the survey data and the values 
deriving from empirical design rules (Table 4.2) for the pier top thickness (P) 
are represented, showing that all the bridges in the sample are within the 
envelope. 

 
 Bridge Line Year 

#1 Agira River Bridge Catania-Enna 1870 
#2 Avella Bridge Avellino-Rocchetta S. Venere 1895 
#3 Cairasca Bridge Domodossola-Isella 1905 
#4 Calore River Viaduct  Avellino-Rocchetta S. Venere 1895 
#5 Cervo River Bridge Santhià-Arona 1906 
#6 Chiaravagna Bridge Genova-Asti 1894 
#7 Diveria Bridge Domodossola-Isella 1905 
#8 Goriano Sicoli Viaduct Roma-Pescara 1888 
#9 Mergozzo Bridge Arona-Domodossola 1905 

#10 Rivisondoli Vaiduct Roma-Sulmona 1888 
#11 Ronciglione Viaduct Roma-Viterbo 1894 
#12 San Polo Bridge Udine-Trieste 1857 

Table 4.8. Surveyed sample of rail bridges: characteristics of the lines. 
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Figure 4.50. Longitudinal view, cross-section and upper view of Agira River 

Bridge. 

 
Figure 4.51. Longitudinal and upper views of Avella Bridge. 

 
Figure 4.52. Longitudinal view of Cairasca Bridge. 



 Chapter 4 163 

Stefano De Santis 

 
Figure 4.53. Longitudinal and upper views of Calore River Viaduct. 

 
Figure 4.54. Longitudinal and upper views of Chiaravagna Bridge. 

 
Figure 4.55. Longitudinal view of Diveria Bridge. 
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Figure 4.56. Longitudinal view of Goriano Sicoli Viaduct. 

 
Figure 4.57. Longitudinal view of Mergozzo Bridge. 

 
Figure 4.58. Longitudinal view of Rovisondoli Viaduct. 
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Figure 4.59. San Polo Bridge: details of the arch and of the foundations. 
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Figure 4.60. Position of the surveyed bridges on the Italian territory. 

 
Span  

(S) [m] 
Rise  

(r) [m] 

Vault 
thickness 

(s) [m] 

Number 
of 

spans 

Maximum 
pier height  
(HP) [m] 

Maximum 
pier width 

(P) [m] 
r/S s/S 

#1 16.1 3.15 0.85 3 5.00 2.73 0.20 0.05 
#2 15.0 7.50 0.81 5 12.72 2.60 0.50 0.05 
#3 32.0 6.40 1.85 1 − − 0.20 0.06 
#4 12.6 6.00 0.80 5 8.15 2.20 0.48 0.06 
#5 18.0 3.60 0.95 5 5.52 2.60 0.20 0.05 
#6 18.5 9.25 1.07 10 28.70 3.00 0.50 0.06 
#7 40.0 10.00 1.90 1 − − 0.25 0.05 
#8 10.0 5.00 0.70 9 2.48 2.08 0.50 0.07 
#9 25.0 5.00 1.30 2 2.35 3.50 0.20 0.05 

#10 12.0 2.40 0.95 3 5.80 2.20 0.20 0.08 
#11 18.0 9.00 1.07 7 35.37 3.00 0.50 0.06 
#12 15.0 2.15 0.85 14 3.10 2.30 0.14 0.06 

Table 4.9. Bridge sample: geometric characteristics. 
For bridges #6 (Chiaravagna Bridge) and  #11 (Ronciglione Viaduct) the 

width of the piers without buttresses is considered. 
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Figure 4.61. Comparison between empirical rules (single relations and 
envelope) and survey data in terms of span (S) vs. crown thickness-to-span 

ratio (s/S) for deep arches (left) and shallow arches (right). 
In the relations for shallow arches containing the radius, a value R=0.7S is 

taken as it is recurrent for bridges having rise-to-span ratio equal to 0.2. 
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Figure 4.62. Comparison between empirical rules (single relations and 
envelope) and survey data in terms of span (S) (left) and vault thickness (s) 

(right) vs. pier top thickness (P). 

Different constitutive laws (ENT, EP, Masonry01) are adopted and the 
results are compared to evaluate the effect of the material properties on the 
overall strength. The analyses with the three relations are performed by using 
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a fiber beam model; in addition, software RING with EP material is also 
adopted to make a further comparison on a wide number of cases and 
confirm the reliability of the developed approach. All the results of load-
carrying capability analyses are collected in Table 4.10. 

 

 
Limit Analysis 

(LA) 
Fiber Beams 

(FB)    
 

 EP ENT EP Masonry01 LAEP/ 
FBEP 

FBENT/ 
FBMas01 

FBEP/ 
FBMas01 

SF 
(FBMas01) 

#1 6180 8203 6435 4461 1.04 1.84 1.44 4.5 
#2 3640 4560 3662 3213 1.01 1.42 1.14 3.2 
#3 22100 26300 21494 15963 0.97 1.65 1.35 8.0 
#4 3570 4119 3520 3270 0.99 1.26 1.08 3.3 
#5 7210 8762 7229 6002 1.00 1.46 1.20 6.0 
#6 3820 3599 4419 3084 1.16 1.17 1.43 3.1 
#7 13700 22600 13200 8530 0.96 2.65 1.55 8.5 
#8 4730 5955 4799 4546 1.01 1.31 1.06 4.5 
#9 8400 14700 7664 4631 0.91 3.17 1.66 4.6 
#10 8340 12674 8527 6644 1.02 1.91 1.28 6.6 
#11 3700 3300 3766 2630 1.02 1.25 1.43 2.6 
#12 10402 14293 9083 6642 0.87 2.15 1.37 6.6 

Table 4.10. Bridge sample: ultimate load under LM71 rail load for different 
constitutive models and modelling approaches. 

The comparison between fiber beam model and limit analysis reveals an 
extremely satisfactory agreement: in most cases the mismatch is lower than 
5%, and, anyway, never higher than 16% (Table 4.10 and Figure 4.62). 

The overestimate provided by the simplified constitutive assumptions 
peculiar of a yield design-based approach results to be, on average, equal to 
86% and 36% for ENT and EP relations, respectively; the scatter of these 
data is quite low, as is it shown by the values of the coefficient of 
determination (R2), equal to 0.81 and 0.97.  

The safety factor (SF) is defined as the ultimate load divided by the 
exercise load (equal to 1000 kN for all the bridges, and to 2000 kN for bridge 
#3 that has two ways); on the whole, the surveyed bridges result to be safe 
since, according to the analyses performed with Masonry01 constitutive 
model, the values of SF range from 2.6 (bridge #11) to 8.5 (bridge #7). SF is 
plotted versus the bridge main geometric properties (Figure 4.63) and quite 
weak correlations are found. In fact, it is difficult to find a clear dependence 
on one parameter since several factors play an important role in the structural 
safety. 

Firstly, bridges with larger span result to be safer, but this is probably due 
to the corresponding higher thickness of the vault; secondly, shallow arch 
bridges (low r/S) are found to be safer than deep ones; finally, no significant 
correlation is detected between safety and slenderness (s/S). In Figure 4.63, 
graph (c), it is interesting to observe that span-to-rise ratios are concentrated 
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around 0.2 and 0.5, indicating that these typologies were extremely more 
diffuse than any other ones. 

The overestimate provided by ENT and EP constitutive laws is found to 
be higher for deep and slender arch bridges (Figure 4.64) as a consequence of 
the higher stresses induced on the material in these arch typologies. 
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Figure 4.63. Ultimate load (QU): comparison between fiber beam model and 
limit analysis approach with EP constitutive law (left) and comparison 

between different material relations: ENT, EP, Masonry01 (right). 

Single arch bridges and bridges with low piers show high safety factors, 
as it is shown by the graphs in Figure 4.65 where the dependence of SF on 
the number of spans and on the pier height is plotted and the failure mode is 
also indicated. It is seen that when one or more piers are involved in the 
collapse mechanism, the resulting ultimate load is lower than when the only 
arch fails and no interactions between arches and piers, nor between adjacent 
spans, occur. Moreover, SF does not decrease for a number of spans higher 
than 3, since, at the most, the loaded span and the two adjacent ones are 
involved in the failure mechanism. The safety factor globally decreases with 
the increase of the number of spans, with the only exception of one bridge 
(#12) that has the lowest rise-to-span ratio and very squat piers. 

It is noteworthy that the maximum height of the pier is taken herein as the 
most significant parameter, and not, for example, the average value, since the 
weakest span is generally the one built on the highest pillars. Concerning this, 
it should be observed that the empirical rules do not consider any 
interactions, but the only arch is dimensioned regardless of the eventual 
presence of piers and, let alone, their height. 
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Figure 4.64. Safety factor with EP and Masonry01 constitutive laws: 
dependence on span (a), vault thickness (b), rise-to-span ratio (c) and 

thickness-to-span ratio (d).   
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Figure 4.65. Safety factor: comparison Masonry 01 and ENT and EP 
constitutive laws in dependence on rise-to-span ratio (left) and thickness-to-

span ratio (right). 

0 5 10 15
0

2

4

6

8

10

12

14

Sa
fe

ty
 F

ac
to

r (
S

F)

EP
Masonry01

Arch failure
Arch-pier failure

Number of spans  

0 10 20 30 40
0

2

4

6

8

10

12

14

S
af

et
y 

Fa
ct

or
 (S

F)

Maximum Pier Height (HP) [m] 

EP
Masonry01

Arch failure
Arch-pier failure

 

Figure 4.66. Safety factor for EP and Masonry01 constitutive laws and failure 
modes: dependence on number of spans (left) and maximum pier height 

(right).  

Concluding, it has to be recalled that the proposed modelling strategy 
yields to an underestimate of the effective load carrying capability, since the 
effect of spandrels and fill in terms of stiffness and strength is not included.  
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On the other hand, in the model the abutments are considered as fixed, 
thus no interaction with the soil is accounted for. This may lead to an 
overestimate of the maximum load, especially for shallow arch bridges. 

Moreover, when the safety of a bridge has to be assessed and 
interventions have to be planned the effective maintenance state of the 
construction has to be carefully detected together with the identification of 
the causes of the observed damages and of the corresponding influence on the 
structural response (in the static and dynamic fields) that has to be expected. 
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5. Seismic assessment of 
masonry bridges 

5.1. State-of-the-art 

Many of the Countries having a wide heritage of masonry bridges present 
also a high seismic risk, and the evaluation of the safety level towards 
earthquakes is hence often needed for these structures. Standard codes and 
guide-lines of recent issuing (Eurocode 8: CEN-EN 1998, 2005; Linee guida 
per la valutazione e riduzione del rischio sismico del patrimonio culturale, 
2006; Nuove norme tecniche per le costruzioni, 2008; ISO, 2010) pay special 
attention to the seismic assessment of built constructions, but detailed 
instructions to perform analyses and estimate the seismic reliability of 
masonry bridges are still lacking. 

On the other hand, the dynamic response of masonry arches is, in great 
measure, still unexplored. The contributions in literature devoted to this issue 
in the last years are either addressed to the dynamics of the arch or directly 
oriented to the seismic assessment of the bridge. 

The dynamics of masonry arches has been primarily investigated by 
making use of the mechanism method (Oppenheim, 1992; Clemente, 1998; 
De Luca et al., 2004). The first rough estimate of the safety towards 
earthquakes consists in verifying that the expected peak ground acceleration 
is not higher than the horizontal load that turns the structure into a 
mechanism. Such a formulation is suitable for elegant analytical solutions 
and has been compared with numerical simulations performed by using 
distinct element models in (DeJong and Ochsendorf,  2006; De Lorenzis et 
al., 2007a) as well as with experimental results on small scale model arches 
(DeJong et al., 2008). Besides, a theoretical treatment has newly been 
proposed in (Sinopoli, 2010). These approaches are usually based on the 
classical hypotheses that the material has no tensile resistance and infinite 
compressive strength (Heyman, 1966). 

Recently, some studies have been developed with 3-D elasto-plastic (Pelà 
et al., 2009) or 1-D non-linear finite elements (Resemini and Lagomarsino, 
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2007) to assess the global seismic safety level within a performance-based 
approach, coherently with the most advanced regulations.  

Tridimensional models do not allow non-linear dynamic (time-step) 
analyses to be performed, so equivalent static analyses (push-over) are used 
to evaluate the safety level, and the Capacity Spectrum Method (Freeman et 
al., 1975; Freeman, 1998), the N2 Method (Fajfar and Gašperšič, 1996) or the 
Displacement Coefficient Method (FEMA-273, 1997) are applied. However, 
these methodologies have basically been proposed and calibrated for the 
design of r.c. and steel buildings and their effective reliability when applied 
to existing masonry bridges has to be verified.  

On the other hand, an approach based on macro-elements has been 
proposed, through which it is possible to compare the results of non-linear 
static and dynamic analyses (Resemini, 2003; Resemini and Lagomarsino, 
2007). Anyway, the capability of such a modelling approach in representing 
the effective dynamic behaviour of a masonry bridge has still to be fully 
proved.  

Eventually, some works have been devoted to assess the vulnerability 
towards local mechanisms, as, for instance, the out-of-plane overturning of 
the spandrel walls (Rota et al., 2005). 

As regards the experimental investigation, some static (Fanning and 
Boothby, 2001; Fanning et al., 2005) and dynamic tests (Brencich and Sabia, 
2007; Mautner and Reiterer, 2007) on full-scale bridges have shown the 
effects of fill and spandrel walls on the dynamic response, providing the 
empiric basis for calibrating models with elastic 3-D finite elements 
(Beconcini et al., 2007); finally, in (Ramos et al., 2007) small scale models 
are tested in the laboratory to develop a vibration-based damage 
identification technique. 

 
In the present section, the possibility of using the fiber beam-based 

modelling approach to simulate the seismic response of masonry bridges and 
perform seismic assessment is investigated. The accuracy in describing the 
material properties, combined to the low computational effort required for 
dynamic analyses, seems to guarantee the balance between the accuracy of 
the model of the action and that of the structure, both needed in seismic 
assessment. 

First of all, the dynamics of a single arch under constant base acceleration 
is considered; the failure condition predicted by the fiber beam model is 
compared with the solution provided by the mechanism method, under the 
same assumptions on the material behaviour (ENT constitutive model). The 
effects induced by the variation of the arch geometry are investigated and, 
finally, numerical simulations are carried out considering different 
constitutive relations, accounting for a finite compressive strength (EP 
constitutive model) and a limited ductility (Masonry01 relation), to 
investigate how the local properties influence the overall dynamic resistance.    
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Then, the seismic analysis of masonry bridges is faced, starting from the 
description of the main damages induced by earthquakes and of the limit 
states to be considered within a seismic assessment. The procedures available 
at present time for the evaluation of the seismic response of constructions 
(modal, non-linear static and non-linear dynamic analyses) and for the 
estimate of their safety level towards earthquakes (push-over based methods) 
are recalled, underlining the issues needing particular attention when they are 
applied to masonry bridges. 

Ronciglione Viaduct, already analyzed in the previous chapter, is 
considered as a case study; firstly, its dynamic behaviour in the elastic range 
is examined by means of a linear 3-D finite element model and its natural 
frequencies and modal shapes are compared with the results of the fiber beam 
model to have a further validation confirm. Non-linear push-over and 
dynamic analyses are then performed and their predictions are compared in 
terms of resultant base shear and displacement response to assess to what 
extent, or under what conditions, a static approach ensures an adequate 
reliability. Finally, some basic concepts of  a framework for the performance-
based seismic assessment of masonry bridges are outlined. 

5.2. Collapse of masonry arches under pulse 
base acceleration 

In this section, a single arch under pulse base acceleration is considered 
and its failure is evaluated by means of a finite element model built with fiber 
beams; the results are compared to the ones provided by the mechanism 
method to check the reliability of the fiber beam approach. 

According to the mechanism method assumptions, masonry is considered 
rigid, with infinite compressive strength and no tensile resistance; moreover, 
no sliding between voussoirs is allowed. In the collapse configuration the 
structure is turned into a mechanism resulting from the formation of four 
hinges, and can be treated as a kinematic chain made of four bars. The 
solution, derived in paragraph 5.2.2., is based on displacement and velocity 
analyses on four-bar linkage mechanisms (Erdman and Sandor, 1984), briefly 
recalled in paragraph 5.2.1., and on basic principles of energetic balance, 
while the finite element simulations, described in paragraph 5.2.3., consist in 
non-linear dynamic analyses under rectangular accelerograms. 
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5.2.1. Displacement and velocity analyses on four-bar linkage 
mechanisms 

A mechanism is a mechanical device that has the purpose of transferring 
motion and/or force from a source to an output. A linkage consists of links 
(or bars), generally considered rigid, which are connected by joints to form 
open or closed chains (or loops). Such kinematic chains, with at least one link 
fixed, become mechanisms if at least two other links retain mobility, or 
structures if no mobility remains. A mechanism permits relative motion 
between its rigid links, a structure does not.  

If the motion exhibited by the mechanism is such that all the links move in 
parallel planes, it is called two-dimensional or plane. Plane rigid body motion 
consists of rotation about axes perpendicular to the plane of motion and 
translation.  

The four-bar linkage is the simplest closed loop linkage and has three 
moving links plus one linked link and four pin joints (Figure 5.1). The link 
that is connected to the power source, or prime mover, is called the input link 
(AB). The output link connects the moving pivot (C) to ground pivot (D); 
finally, the coupler or floating link connects the two moving pivots (B and 
C), thereby coupling the input to the output link. 

A

B

C

D

iy

x

CD


BC

AB

DA






 
Figure 5.1. The four-bar linkage. 

The four-bar linkage is a mechanism with one degree of freedom, then 
prescribing one position parameter (or Lagrange parameter), like, for 
example, the angle of the input link, will completely specify the position of 
the rest of the mechanism, identified by the angles of the other links (which 
are the dependent parameters of the system).  
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The length of the four links of the linkage ABCDA are identified by the 
segments AB, BC, CD and AD, and their angles AB, BC, CD and DA are 
measured counterclockwise from the horizontal; moreover the angle  is 
called transmission angle,  is the angle between the link DA and the 
diagonal BD, and, finally,  is the angle between CD and BD. Note that the 
linkage is defined in a complex reference plane (x, iy). 

The relations giving these four angles are (5.1−5.4) and can be easily 
demonstrated by geometric considerations: 

   DAAB

2222

AB  cos
CDBC
DAAB

CDBC2
DAABBCCD cos 





  (5.1) 
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 DAAB
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AB  cosABDA

 sinAB tan



  (5.2) 

    
 AB

AB
AB  cosBCCD

 sinBC tan



  (5.3) 

    
 AB

AB
AB  cosCDBC

 sinCD tan



  (5.4) 

Thus, the dependent angles can be written in terms of the Lagrange 
parameter AB: 

        AB1DAABABABBC  f   (5.5) 

        AB2DAABABABCD  f   (5.6) 

To obtain the rotational velocities BC and CD, given AB, it is useful to 
express them in the polar form, in addition to the Cartesian one, starting from 
the first link AB. 

The position of B considered from the origin A is given by the vector RAB, 
which can be written by the following expression (5.7), then derived with 
respect to the time to obtain the absolute linear velocity vector of point B 
(vAB), expressed in polar and Cartesian forms in expressions (5.8) and (5.9), 
respectively: 

 ABABesin  AB  cos AB ABAB
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  (polar form) (5.8) 
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Note thatAB is the angular velocity of AB, with respect to the x axis, and 
is a scalar variable measured positive if counterclockwise. 

The relative velocity of point C with respect to point B can be expressed 
by the difference of their velocities with respect to a third point, such as A: 
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
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 (5.10) 

Similarly, the velocity of point C can be written also with respect to D: 

 CD   CDCD Rv i  (5.11) 

The rotational velocities of links BC and CD can be finally found by 
solving this system (made of two scalar equations) and written in terms of the 
Lagrange parameter of the system and its derivative with respect to time: 
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These latter two functions can be written also in the following form: 
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5.2.2. Solution provided by the mechanism method 

In this section, the collapse of a circular arch under impulse base motion is 
evaluated on the base of energetic balance principles. The structure is 
considered to be turned into a mechanism characterized by the formation of 
four plastic hinges (A, B, C and D) and is thereby treated as a four-bar 
linkage ABCDA (Figure 5.1). Such a mechanism is made by three mobile 
links (AB, BC and CD) and a fourth fixed one (DA), connecting the two 
constrained hinges D and A, and has only one degree of freedom. Thus, the 
deformed configuration, described by the rotations of the links, depends on 
only one of them, arbitrarily chosen as the Lagrange parameter of the system; 
in this case AB=that is the rotation of the driver link, is chosen. The 
rotations BC and CD and rotational velocities BC   and CD  of links BC 
(coupler) and CD (follower) are written in terms of  and   through 
displacement and velocity analyses, as it is discussed in the previous 
paragraph. The rotations of the links are represented in Figure 5.2; in the 
initial configuration they are denoted as AB,0, BC,0 and CD,0; since link DA 
is fixed, DA does not change during motion. Moreover, rAB, rBC and rCD are 
the distances of the link centres of mass (GAB, GBC, GCD) measured from 
hinges A, B and D, respectively; AB, BC and CD are their angular offsets 
measured from the rotations AB, BC andCD. Finally, the masses of the links 
AB, BC and CD are named mAB, mBC and mCD, respectively. 

 
Figure 5.2. The circular arch as a four-bar linkage mechanism in its initial and 

deformed configurations. 

The external force is an acceleration at the base (named a), constant 
within a time interval , and null for t > , and the failure condition is 
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represented by the maximum sustainable acceleration for a given impulse 
duration. 

The problem is solved only for the first half cycle of motion and the 
positions of the plastic hinges (identified by the angles B and C) are 
assumed to be equal to 62.5° and 107.5° respectively, as it is done in 
(Oppenheim, 1992; De Lorenzis et al., 2007a). 

First of all, the potential energy of the system V() is derived; it depends 
on  by means of equation (5.17), being g the acceleration of gravity, and is 
plotted in Figure 5.3 for an arch having radius R=10m, thickness s=0.15R 
and angle of embrace =157.5° (note that during motion  decreases). 
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Starting from the initial geometry, in which =(t=0)=0, V() increases 
until it reaches a peak value when =1; when ≤ 1, the self weight spends a 
negative work, since it tends to bring back the structure to its undeformed 
configuration. On the contrary, when > 1 it contributes to make the 
deformation diverge and so its work is positive. Thereby, the peak rotation 
can be defined as a non-recovery condition.  
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Figure 5.3. Potential energy variation for a circular arch having =157.5° 

R=10m and s/R=0.15. 

The arch fails as soon as the total work done by the inertial forces in the 
duration  (which is a positive work) is equal to the difference in potential 
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energy between  and 0 (that is the maximum negative work the self-weight 
can spend). A similar procedure was developed in (Housner, 1963) to 
identify the overturning of a rigid block under constant base acceleration. 

In the present case, the failure condition is expressed by Equation (5.18), 
in which vAB, vBC and vCD are the horizontal components of the velocities of 
their centres of mass, stated in expressions (5.19−5.21). 

          01

0

CDCDBCBCABAB td tv mtv mtv m a 


VV  (5.18) 

      
t

rtcosr
t

tv ABABABABAB 






  (5.19) 

 
        

 















BC
BCBCBC

2
BC

2

ABBCBCBCBC

cos r AB 2rAB
t

       

tcosABtcosr
t

tv
 (5.20) 

      
t

r
t

rtcosr
t

tv CD
CD

CD
CDCDCDCDCD 














  (5.21) 

To solve (5.18), the equation of motion of the system is needed; it is 
expressed in terms of the unique Lagrange parameter (t) and can be derived 
starting from Hamilton’s principle: 

 Q
t






















 VTT


 (5.22) 

where V() is the potential energy, T(,  ) is the kinetic energy and Q() 
is the forcing function (Oppenheim, 1992). Since the four-bar linkage has one 
degree of freedom, Hamilton’s principle depends on the unique Lagrange 
parameter of the system .  

The potential energy T is stated by expressions (5.23), in which IAB, IBC 
and ICD are the centroidal moments of inertia of the links: 
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The forcing function Q is a linear function of the constant acceleration a, 
given by (5.24): 
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All the terms of Hamilton’s principle (5.22) can be expressed in terms of 
(t) and therefore the equation of motion can be written as: 

        a Pg F L M 2    (5.25) 

 Equation (5.25) expresses the equality between the works associated to 
kinetic and potential energy (on the left side) and to the external load (on the 
right side) and contains four coefficients: M(), L(, F() and P(). They 
depend on the geometry of the system and are strongly non-linear in ; their 
expressions are reported in (5.26−5.29):  
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The expressions of the four coefficients can be simplified by writing the 
geometrical dimensions in terms of the radius R and of the mass density , 
and then dividing by R2; thus, the equation of motion does not depend on the 
mass density. Moreover, since M and L are proportional to R3, while F and P 
are proportional to R2, in the resulting equation of motion R multiplies the 
terms in   and   and not the other ones; thereby, a size effect results to be 
expected in the dynamic response of the arch but not in the static one. 

To determine the expression of (t), an initial state of rest (  = =0) is 
imposed and instantaneous (constant) values of the coefficients are taken: 
M0=M(0)/R2, L0=L(0)/R2, F0=F(0)/R2 and P0=P(0)/R2. The latter 
assumption leads to a tangent approximation of the response inducing an 
approximation that is licit in the small rotations field. The equation of motion 
is hence recast as: 

 a Pg F LM 00
2

00    (5.30) 

(5.30) is solved and the expression of (t) is found: 
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The failure condition can now be determined by substituting in (5.18) the 
expression of (t) given by (5.31). Since no analytical (closed-form) solution 
of the integral in (5.18) can be found, a numerical integration is made. The 
solution for an arch having an angle of embrace =157.5°, radius R=10m  
and slenderness ratio s/R=0.15 is plotted in Figure 5.4. 
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Figure 5.4. Failure domain under impulse base motion for a circular arch 

having =157.5° R=10m and s/R=0.15. 

It is seen that for short impulse durations high accelerations are needed to 
induce the structural collapse, while for  the curve asymptotically tends 
to a limit value coinciding with the static multiplier. The latter can be easily 
obtained as the ratio between the virtual works of horizontal and vertical 
loads, which is equal to F0/P0 as stated in Equation (5.30) if dynamic effects 
are neglected. 

Three domains can be identified in the graph as it is pointed out in 
(Clemente, 1998): if the ground motion amplitude is lower than the limit 
value the horizontal acceleration is not even sufficient to turn the arch into a 
mechanism as no hinging occurs; on the contrary, when it is higher than the 
limit value the onset of motion takes place. If the point (, a) is below the 
failure curve it represents an impulse which does not cause the structural 
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collapse, i.e. there is hinging but the arch returns to its initial geometry; 
finally, if the couple (, a) identifies a point above the curve the 
corresponding impulse makes the arch fail. 

5.2.3. Numerical simulation through fiber beams 

Once the arch is modelled by using beam elements with fiber cross-
section, the investigation of its failure condition under impulse base motion is 
made by repeated non-linear dynamic analyses carried out for several 
impulse durations so as to find as many collapse acceleration values. Aiming 
at reproducing the same assumptions of the mechanism method, no damping 
is considered and the material assigned to the fibers has no tensile resistance 
and infinite compressive strength; finally, the stiffness is high enough that the 
it can be considered as infinite. No plastic hinges are defined a priori as they 
are determined by the model. The result is found to be independent on the 
number of beam elements or of fibers in their cross section, provided that an 
adequate discretization is ensured that does not affect the geometry of the 
arch (inadequate number of elements) or the stress distribution within the 
cross-section (inadequate number of fibers). 

The result of the FE simulation is represented in Figure 5.5 for an arch 
having mass density  equal to 2 ton/m3, R=10m, s=0.15R and =157.5°, 
under an impulse with amplitude ranging from 0.73 to 0.77g and duration 
=0.60sec. The collapse is assumed to occur when the rotation of the driver 
link AB (Figure 5.5b) or the horizontal displacement of the crown (Figure 
5.5d) diverges, i.e. does not go back to zero after the peak and so no 
equilibrium solution can be found any more. The failure configuration is 
characterized by the activation of a four-hinge mechanism (Figure 5.5a) and 
is correctly predicted; the positions of the hinge sections are easily identified 
by the peaks in the curvature diagram (Figure 5.5c), where a slight spreading 
is due to the continuum nature of the modelling approach. Finally, the stress 
field in sections A, B, C and D is plotted in Figure 5.6, pointing out the high 
level of partialization of the hinges where the load resultant is very close to 
the section edge, at the arch intrados and extrados alternatively. 
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Figure 5.5. Fiber beam model results for an arch having R=10m, s/R=0.15, 
=157.5° under impulse base motion with =0.60 sec: collapse configuration 

(a), driver link rotation (b) and horizontal displacement of the key node (d) for 
different values of base acceleration, curvature of the beam elements 

identifying the position of the plastic hinges (c).  
In subplots a and c the impulse amplitude is a=0.75g. 
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Figure 5.6. Fiber beam model results for an arch having R=10m, s/R=0.15, 
=157.5° under impulse base motion with a=0.75g and =0.60 sec: stress field 

in the hinge sections. 

The comparison between mechanical model and fiber beam approach is 
carried out for arches having constant slenderness s/R=0.15 and radius 
ranging from 5m to 20m (Figure 5.7) and for arches having R=10m and 
thickness (s) ranging from 0.12R to 0.2R (Figure 5.8). The failure condition 
provided by the mechanism method is plotted with solid lines, while the 
results of FE simulations are represented by the marks. 

A very good agreement is found for all the considered configurations, 
even if, for very short impulses (<0.4sec) it can be difficult to find stable 
numerical solutions. Regarding the sensitivity analyses, the curves 
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corresponding to different values of R show an increase of resistance towards 
short impulses associated to the increase in the size (Figure 5.7); such a 
difference becomes smaller for long impulses and asymptotically tends to 
zero since all the arches have identical static multipliers. In fact, the static 
solution does not depend on the size while the dynamic one does, as 
discussed before about the equation of motion of the system (5.30). 
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Figure 5.7. Failure domain under impulse base motion different size (R) for 

arches having s/R=0.15and =157.5°: comparison between mechanism 
method (MM) and fiber beam model (FBM). 

The variation of the aspect ratio s/R results in the variation of the arch 
capacity towards both dynamic actions and static loads: as the thickness 
increases, the resistance becomes higher for both short and long impulses, 
and the limit value grows, too (Figure 5.8). The positions of the plastic hinges 
and the non-recovery rotations depends on s/R, and not on R: a higher 
slenderness results in a decrease of angles B and C (Figure 5.9) indicating 
that the plastic hinges move towards to first one (point A), as it is found also 
in (Clemente, 1998). Lower s/R ratios are related to higher non-recovery 
rotations, since the potential energy is proportional to the link masses, as it is 
also shown by the curves plotted in Figure 5.10 representing the variation in 
potential energy V() for different slenderness values. Finally, it is 
noteworthy that 0−1 is a small angle for the investigated values of s/R, 
which are comparable, for typical span dimensions, to the section thickness 
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suggested in the empirical formulations proposed in classical design treatises 
and adopted in masonry arch bridges. 
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Figure 5.8. Failure domain under impulse base motion different aspect ratios 

s/R ratios for arches having R=10m and =157.5°: comparison between 
mechanism method (MM) and fiber beam model (FBM). 
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Figure 5.9. Position of the plastic hinges and non-recovery rotations for 
different s/R ratios. 
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Figure 5.10. Normalized potential energy for arches having =157.5° and 

different aspect ratios s/R. 

5.2.4. Effect of material properties 

Thanks to the agreement found between mechanism method and fiber 
beam approach, the latter model is used to investigate the effect of the 
material properties on the dynamic behaviour of the arch under acceleration 
pulse at the base. The same circular arch as before (R=10m, s/R=0.15, 
=157.5°) is analyzed considering elasto-plastic (EP) and Masonry01 
constitutive models in order to investigate how the use of a more accurate 
law for the material can affect the arch capability to sustain dynamic actions. 
The values of the parameters of the constitutive relations are the same ones 
assigned in the previous chapter of the Thesis for static analyses (Table 3.3). 

When the assumptions of infinite strength and unlimited ductility 
(Heyman, 1966) are removed, passing from ENT to EP material, and from 
EP to Masonry01, a slight decrease of the arch resistance towards impulse 
base acceleration is found (Figure 5.11): the limit value passes from 0.348g 
to 0.336g and 0.325g. Therefore, the resistance to horizontal static loads is 
not strongly influenced by the material properties and the classical 
assumption of infinite strength appears reliable (note that the referential arch 
is a shallow arch and that higher differences have to be expected for deep 
arches).  

However, as it is shown in Figure 5.11, the asymptotic value giving the 
resistance towards static loads is reached more rapidly if the effective 
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material behaviour is taken into account than if the elasto-plastic assumption 
is made or an infinitely resistant material is assumed. Thus, the capacity to 
pulse base acceleration turns to be heavily dependent on the material 
properties in the range of short-to-medium pulse durations. For example, for 
=1sec the base acceleration making the arch fail is equal to 0.53g, 0.44g and 
0.375g for the three constitutive laws: in this case, neglecting the effective 
material properties provides and overestimate of the collapse pulse 
acceleration of about 155% and 375% for EP and ENT constitutive laws, 
respectively. 

It appears from these results that, as for the assessment of travelling load-
carrying capability, also in the case of the resistance to horizontal 
acceleration pulses the material properties play a non-negligible role and 
failing to accounting for the finite value of material strength and for the 
limited ductility in compression may lead to a significant overestimate of the 
effective arch capacity.  
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Figure 5.11. Failure domain under impulse base motion of and arch with 
R=10m, s/R=0.15, =157.5°, considering different materials: Elastic-no 

tensile resistant (ENT), Elastic perfectly plastic (EP), Masonry01. 
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5.3. Behaviour of masonry arches under 
earthquake motion 

Aiming at investigating the seismic response of a masonry arch under 
earthquake motion, modal analysis, push-over analysis under different load 
distribution and non-linear dynamic (step-integration) analysis are performed. 
The structure is arch considered in previous section, having radius R=10m, 
thickness s/R=0.15 and angle of embrace =157.5°. The more refined 
constitutive relation for masonry (Masonry01 model) is adopted. 

Modal analysis provides the modal frequencies, the participating factors 
and masses and the eigenvectors that might be used in push-over analysis. 
The first ten modal shapes are represented in Figure 5.12, and their periods 
and frequencies are collected in Table 5.1 together with the modal 
participating factors and masses (referred to horizontal and vertical 
directions). Modes #1, #4 and #5, which are clearly un-symmetric, display 
significant participating masses in horizontal direction, modes #2 and #7 give 
a very low contribution; on the contrary, the participating factors of all these 
modes in vertical direction are null. Modes #2, #3, #6, #8 and #9 show a 
symmetric shape, and their contribution is only in vertical direction; in 
particular, mode #3 displays the highest participating mass. 

Mode #1 Mode #2 Mode #3

Mode #4 Mode #5 Mode #6

Mode #7 Mode #8 Mode #9

Mode #10  
Figure 5.12. Modal analysis: first ten modal shapes. 
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Non-linear cyclic static analyses are then performed; forces are applied 
within an incremental displacement-controlled quasi-static analysis, after 
having applied the entire self-weight. Three distributions are used (Figure 
5.13): 

#1: Horizontal loads proportional to masses; 
#2: Horizontal loads proportional to the product of masses and 

displacements of the fundamental mode (mode #1); 
#3: Horizontal and vertical loads, proportional to the product of masses 

and displacements of the first mode. This last distribution accounts 
for the fact that the first eigenvector contains non-null displacements 
in both vertical and horizontal directions, even if the participating 
mass in the former direction is zero (the algebraic sum of the vertical 
displacements of the nodes results null). 

 

Mode Period T 
[sec] 

Frequency 
f [Hz] 

Horizontal direction Vertical direction 
Participating  

factor  
Participating  

mass m 
Participating  

factor  
Participating  

mass m 
1 0.44 2.25 0.26 40.4% 0.00 0.00 
2 0.23 4.29 0.00 0.0% 0.12 8.5% 
3 0.13 7.94 0.00 0.0% 0.25 36.3% 
4 0.12 8.40 0.20 22.3% 0.00 0.00 
5 0.08 13.16 0.12 8.2% 0.00 0.00 
6 0.07 13.70 0.00 0.0% 0.08 3.9% 
7 0.05 18.87 0.06 2.3% 0.00 0.00 
8 0.05 21.28 0.00 0.0% 0.14 11.4% 
9 0.04 25.64 0.00 0.0% 0.08 3.5% 
10 0.03 31.25 0.07 3.1% 0.00 0.00 

Table 5.1. Modal analysis: periods and frequencies, participating factors and 
masses of the first ten modes. 



194  Seismic assessment of masonry bridges 

Roma Tre University - DiS 

Load distribution #1

Load distribution #2

Load distribution #3
 

Figure 5.13. Load distributions for push-over analyses. 

The capacity curves resulting from push-over analyses are represented in 
Figure 5.14, in which the horizontal displacement of the key node (dk) and 
the resultant base shear normalized by the arch self weight (Vb/W) are on the 
x-axis and on the y-axis, respectively. Since the structure is symmetric, the 
capacity curves are symmetric, too. Moreover, it is seen that, passing from 
distribution #1 to #2 and #3, a reduction of both strength and stiffness is 
found: the ultimate load is in the order of 33%, 28% and 21% of the self- 
weight, respectively. The cyclic loading leads to very narrow cycles in the 
response, indicating a low hysteretic dissipation. Such a result is not so 
different from the response of a rigid block in rocking motion, pointing out 
the similitude between masonry arches and rigid body systems. Finally, it has 
to be said that numerical instabilities arise at the very beginning of the 
softening branch of the response curves. 
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Figure 5.14. Push-over curves for different load distributions. 

Non-linear dynamic analyses are performed under two natural 
accelerograms (Figure 5.15), with growing scaling factor (SF) ranging from 
0.2 to 1.6. Dissipative phenomena are represented by means of a Rayleigh 
viscous damping term, whose parameters are chosen so as to achieve an 
equivalent damping ratio () equal to 2% at the first and fourth modal 
frequencies (f1=2.25Hz and f4=8.40Hz), which are the most significant in 
terms of participating mass in horizontal direction. The chosen damping ratio 
=2% seems reasonable by looking at the cyclic capacity curves and 
considering that no fill soil nor spandrel walls are present in the considered 
structure. Analogously to push-over analyses, the horizontal displacement of 
the crown (dk) and the resultant base shear Vb are recorded.  

The results (shown in Figures 5.16 and 5.17 for the two input signals) are 
represented in terms of maximum response under the various scaling factors 
and whole response curve of two simulations (having SF equal to 0.8 and 
1.2). The maximum response is identified by maximum displacement of the 
control node (the key) and corresponding (same instant) base shear, 
normalized by the arch self-weight W. 

It is seen that both the response curve of a single simulation and the points 
representing the application of a record with increasing scaling factor result 
to be close to the capacity curve of the push-over analysis, provided that 
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distribution #3 is adopted. Dynamic effects, probably due to the interaction 
between modes, result in a slight irregular response. As regards the maximum 
conditions, under signal #1 the shear of the last point (SF=1.6) is a little 
lower than the previous one (SF=1.4), while under signal #2 the points 
identifying simulations with SF=0.8, SF=1.0 and SF=1.2 almost lie on the 
same horizontal line, representing very close values of the base shear. 
Concerning the whole response curves, their shape seems to indicate that the 
global response results from a sort of superimposing of different modes.   
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Figure 5.15. Signals used for non-linear dynamic analyses on the single 

masonry arch.  
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Figure 5.16. Comparison between push-over and non-linear dynamic analyses 

under accelerogram #1: response curves of two dynamic simulations with 
different scaling factors (up) and maximum conditions for all the adopted 

scaling factors (down). 
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Figure 5.17. Comparison between push-over and non-linear dynamic analyses 

under accelerogram #2: response curves of two dynamic simulations with 
different scaling factors (up) and maximum conditions for all the adopted 

scaling factors (down). 
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The sensitivity to the radius R and to the aspect (span-to-radius) ratio s/R 
is investigated. Non-linear dynamic analyses are carried out under signals #1 
and #2 and repeated for different geometries. In particular, the radius ranges 
from 1m to 15m and the aspect ratio ranges from 0.08 to 0.2, which are 
considered the interesting intervals from an engineering perspective.  

For each simulation, a preliminary modal analysis is also performed, so 
that the equivalent damping ratio is always equal to 2% for the first and 
fourth frequencies, which depend, of course, on the geometry. An increase in 
the radius results in a linearly proportional increase in the period, while no 
variations in terms of participating mass is found. Diversely, when s/R 
changes, both the period and the participating mass change, too, even if the 
former decreases much more rapidly than the latter; slender arches display 
longer periods and slightly higher participating masses than squat ones. 

The results of the sensitivity analyses under earthquake motion are plotted 
in Figures 5.18 and 5.19: an increase of the maximum displacement 
(normalized by R) is found to be substantially proportional to the arch radius, 
while a decrease of the maximum displacement results from the increase of 
s/R, indicating that large (being equal the aspect ratio) and slender arches 
display higher displacements than squat ones.  
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Figure 5.18. Maximum displacement in non-linear dynamic analyses: 
sensitivity to the radius R. 
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Figure 5.19. Maximum displacement in non-linear dynamic analyses: 
sensitivity to the aspect (span-to-radius) ratio s/R. 

5.4. Seismic analysis of masonry bridges 

5.4.1. Damages induced by seismic events 

Very few information are available on damages or collapses induced by 
earthquakes on masonry bridges. From the one hand, this can be attributed to 
the higher attention that is paid to buildings and built-up-areas rather than on 
bridges; on the other hand, it may result from the low vulnerability of this 
structural typology towards seismic actions. 

Damages caused by seismic events can be classified depending on the 
kind of mechanism they are associated to (the portion of the construction that 
is involved), or on their severity (the importance of their consequences) 
(Resemini, 2003; Rota, 2004; Gambarotta et al., 2006). 

If the mechanism typology is considered, two main categories of damage 
can be defined: 

 
 Damages associated to local mechanisms  

Rotation or overturning of the spandrel walls (typically occurring on 
small bridges made of a single, often shallow, arch or having very 
squat piers); moderate shear damage of piers. 
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 Damages associated to global mechanisms 
Collapse of one or more vaults, overturning of the bridge in transversal 
direction, flexure or shear collapse of the piers. Such damages have 
been observed on multi-span bridges and viaducts, having tall piers 
and medium to long span (>12m) deep vaults, and are typically 
generated by severe earthquakes. 

 
Looking at the consequences produced by the damage state, the following 

distinctions can be made: 
 
 Damages that influence, but not compromise, the bridge serviceability 

They are associated to local mechanisms and consist in limited but 
non-reversible deformations; the permanent out-of-plane rotation of 
the spandrel walls (in the order of 510cm) has been surveyed on 
some structures, reducing the confining effect on the fill soil and, 
therefore, the load-carrying capability of the bridge; in this case, 
longitudinal cracks on the deck have been observed.  
Besides, on rail bridges, a residual vertical deflection of the track 
(induced by the deformation of the fill soil) could compromise the 
transitability.  
 

 Damages that compromise the bridge serviceability 
They are associated to both local and global mechanisms; the former 
case includes slight cracks on the piers, mainly due to high 
compressive stresses or foundation settlements. Several examples are 
collected in technical literature showing the out-of-plane overturning 
of the spandrel walls: the collapse can involve the only wall or its 
external leaf, the wall and the external cover of the arch, or, in the most 
severe conditions, the wall and the fill soil, especially when made of 
loose material.  
Global mechanisms in longitudinal plane may induce a decompression 
of the arch and the falling of some voussoirs; the main causes are: non-
synchronous ground motion at the base of the piers, large out-of-phase 
displacements of high slender piers, and, finally, dynamic effects on 
the arch. Such a disarrangement is favored by the presence of an 
extremely poor masonry with weak mortar; anyway, it has mainly 
surveyed on the only lateral stone cover of the vaults. 
Typically, these damages can be easily repaired and the serviceability 
restored. 
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 Damages that induce the bridge collapse 
They are extremely rare; very few case are collected in literature, in 
which the collapse of the whole bridge, or of a large portion of it, has 
occurred for overturning in transversal direction. 

5.4.2. Limit states and seismic analysis methods 

Analogously to buildings, at least two limit states have to be considered in 
the seismic analysis of masonry bridges: a damage limit state (DLS) and a 
ultimate limit state (ULS) (Eurocode 8: CEN-EN 1998, 2005; Linee guida 
per la valutazione e riduzione del rischio sismico del patrimonio culturale, 
2006; Nuove norme tecniche per le costruzioni, 2008; ISO, 2010). On the 
base of the damages surveyed on masonry bridges after seismic events, 
summarized in the previous paragraph, some considerations can be made on 
the structural response under DLS and ULS conditions: 

 
 Damage Limit State (DLS) 

It consists in the appearance of local damages compromising the 
serviceability of the bridge and needing a reduction of maximum 
weight and speed allowed, or a temporary suspension of traffic for 
inspection and repairing interventions.  
Under DLS conditions, local mechanisms have to be analyzed, such as 
the out-of-plane overturning of the spandrel walls and the ruptures of 
limited portions of the construction, including non-structural elements, 
like the parapets, the infrastructural installations and the read surface. 
The stress level on main structural elements (vaults and piers) has to be 
recorded to prevent the onset of cracks due to material crushing. 
Finally, the relative displacement of the arch springers has to be 
checked, as it can induce a misalignment of the voussoirs.  
 

 Ultimate Limit State (ULS) 
It consists in the collapse of the bridge or of a large portion of it, but 
also in the appearance of a severe and diffuse damage state 
compromising the practicability of the structure.  
The  global response in both longitudinal and transversal directions has 
to be considered; the former typically results the most vulnerable for 
bridges with squat piers, while the latter is often the less safe for high 
viaducts.  
The seismic assessment of an existing masonry bridge has to include 
the identification of the expected severe damages or collapses of the 
main structural elements (arches and piers), that can compromise the 
capability of the construction in sustaining even the vertical loads. 
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Partial models can be adopted for the evaluation of the seismic response 

of a limited portion of a masonry bridge and the assessment of its 
vulnerability towards earthquakes.  

The local mechanism of out-of-plane overturning of the spandrel walls 
can be studied by using the rigid block model and applying an adequate base 
motion, derived as the earthquake motion filtered by the structure from the 
ground to the base of the wall (Rota et al., 2005). 

Concerning piers and vaults, simplified models have been proposed in 
literature to determine the seismic response of limited portion of the bridge. 
The behaviour of a single pier is analyzed by considering it as isolated from 
the remaining part of the construction and by having recourse to a beam 
model with adequate constraint conditions. A single arch (with fixed ends) 
under transversal horizontal loads is instead represented by using a simplified 
resistant system made of equivalent diagonal rectilinear truss elements. 
Anyway, these approaches may lead to an excessive underestimate of the 
effective safety level (Gambarotta et al., 2006).  

Otherwise, global models are needed to simulate the overall seismic 
response of a masonry bridge under earthquake motion and to evaluate its 
safety level towards seismic loads. The available procedures, prescribed by 
codes for buildings, go from linear static and linear dynamic (modal) 
analyses, to non-linear static analysis (push-over) and non-linear dynamic 
analysis (time-step integration). In the following paragraphs, they are briefly 
recalled and some observations about their application to masonry bridges are 
made. 

5.4.3. Modal analysis 

Modal analysis represents the most simple approach to the evaluation of 
the dynamic behaviour of structures. Anyway, its basic assumption that the 
material is linear elastic constitutes a strong simplification when applied to 
masonry bridges. In fact, because of the weakness of masonry in traction, the 
effective structural response may be significantly far from the one provided 
by elastic numerical simulations. Thereby, attention has to be paid to the 
interpretation of the results: modal shapes really make sense only when 
describing the dynamic response to environmental vibrations (induced for 
example by traffic loads or by the wind) producing small displacements. In 
this case, the cross-section of the structural elements, whose compression 
results from gravity loads, does not reach a state of partialization and the 
effects of self-weight and vibrations can be superposed without large errors.   

As regards the elastic stiffness of the material, it should be defined so as 
to be representative of the effective overall stiffness under the design 
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scenario. Within a seismic assessment, since large displacements are 
expected, a secant rather than an initial tangent Young modulus should be 
assumed. Moreover, the elements that are expected to play a negligible role 
in the non-linear response (e.g. that are not compressed in the deformed 
configuration) should not be included in the analysis.  

Clearly, an adequate representation of the structural masses is crucial for 
achieving a reliable description of the dynamic response of a structure; 
concerning this, spandrel walls and fill soil play a fundamental role in the 
seismic behaviour of masonry arch bridges. Anyway, their accurate 
modelling in FE codes requires refined strategies with 2-D or 3-D elements. 
Since this entails heavy computational costs, simplified representations can 
be achieved by means of concentrated point masses, adequately positioned 
and connected to the underlying vaults and piers.  

Modal frequencies and eigenvectors can be taken as a preliminary 
indication of the main characteristics of the dynamic response of a masonry 
bridge: the more deformable direction (longitudinal or transversal, on the 
base of the periods of vibration), the expected deformed configuration 
(depending on the modal participating factors and on the percentages of 
excited masses), the input signals that may induce the most severe effects on 
the construction (depending on their frequency content). Finally, modal 
analysis provides the shape of load distributions to adopt in push-over 
analyses.  

5.4.4. Push-over analysis-based procedures for seismic assessment 

Codes and guide lines of recent issuing propose criteria for the evaluation 
of the safety towards earthquakes based on non-linear static approaches 
(push-over). Typically, they need limited computational effort (lower than 
non-linear dynamic analyses) but provide a more reliable estimation than 
linear methods of the structural response of strongly non-linear constructions 
like masonry bridges.  

At present time, the most common non-linear static analysis-based 
methodologies are the Capacity Spectrum Method (Freeman et al., 1975; 
Freeman, 1998), adopted in the American Standard ATC-40, and the N2 
Method (Fajfar and Gašperšič, 1996), included in Eurocode8 (CEN-EN 1998, 
2005) and in the Italian Standard (Nuove norme tecniche per le costruzioni, 
2008). Both the methods consist in the comparison of the seismic capacity of 
the structure and the seismic demand. 

CSM and N2 method can be now considered part of the well-established 
usage of professional engineers for what concerns r.c. and steel buildings, but 
their reliability when applied to masonry bridges has still to be proved, 
mostly because of the strong simplifications resulting from their main basic 
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assumption, i.e. that the load distribution imposed on the structure during 
push-over analysis corresponds to the one produced by the earthquake. From 
this hypothesis, it follows that an adequate choice of the distribution of 
horizontal loads is crucial, since different distributions may lead to totally 
different results. Typically, forces proportional to the product of masses and 
modal displacements (referred to the fundamental period) are considered the 
most suitable to reproduce a deformed configuration that is close to the 
effective one; of course, this is true only when the dynamic response is 
mainly governed by the fundamental mode (whatever that is). When dealing 
with masonry bridges, attention has to be paid to modal shapes and 
participating masses, since higher modes may induce heavier effects than 
modes with longer periods, especially in longitudinal direction and in bridges 
with squat piers, which may display un-symmetric modal shapes or local 
modes involving limited portions of the construction, like the case of 
torsional modes of the vaults (Gambarotta et al., 2006).  

The possibility for including the contribution of higher modes consists in 
performing modal push-over analyses (Chopra and Goel, 2002; Goel and 
Chopra, 2005). Assuming that the dynamic response is governed by the first 
mode does not even allow the effect of damage and inelastic phenomena to 
be accounted for. Refined methodologies have been proposed to include 
damage evolution during the deformation process, such as the adaptive push-
over (Antoniou and Pinho, 2004). They have never been applied to masonry 
bridges, and, since a high computational effort is needed, they seem to be, by 
now, cumbersome in current use.  

As regards the load distribution to be used for in-plane push-over on arch 
bridges, since eigenvectors usually display displacements in both horizontal 
and vertical directions, analyses with both horizontal and vertical loads 
(proportional to the product of masses and modal displacements, i.e. to 
inertial forces) appear to provide the most reliable estimation of the structural 
overall stiffness. 

 
The N2 Method was initially proposed to achieve a satisfactory balance 

between required reliability and applicability for design use, and its name 
was chosen to state the fact that two separate mathematical models are 
adopted to represent capacity and demand. The capacity is obtained by a non-
linear static analysis and represented by the capacity curve; the demand is 
described by an inelastic response spectrum derived from the elastic 
acceleration one. The latter is provided by the code for the site of interest and 
for the design earthquake scenario (hazard level), while the procedure for 
deriving the inelastic spectrum takes into account the cumulative damage 
associated to the inelastic behaviour of the structure, which is considered to 
be particularly important for existing (and masonry) constructions.  

Seismic capacity and demand are compared in the spectral domain, 
defined as the plane having the spectral displacement Sd on the x-axis and the 
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spectral acceleration Sa on the y-axis. The capacity curve, when converted in 
the spectral domain, takes the name of Capacity Spectrum (CS), while the 
acceleration spectrum takes the name of Demand Spectrum (DS). The 
conversion of the push-over curve into the CS is based on the assumption that 
the response of the structure, which is a multi-degree-of-freedom (MDOF) 
system, can be represented by the response of an equivalent SDOF system. 

The relation (5.32) holds between a quantity of the MDOF system () and 
the SDOF one (): 

 *  (5.32) 

It depends on the modal participating factor , defined as stated by (5.33), 
being M the structure mass matrix,  the eigenvector normalized so that its 
maximum is 1, and, finally, t the influence vector containing the direction 
cosines between the earthquake motion direction and the degrees of freedom 
of the system. The numerator of  is also called modal participating mass 
(m*).  

 
MΦΦ
MΦt

T

T

  (5.33) 

Thus, the CS is derived through expressions (5.34) and (5.35) from the 
push-over curve defined in the plane of the control displacement (dk) and of 
the resultant base shear (Vb).  

 


 k
d

dS  (5.34) 

 
*m

VS b
a 
  (5.35) 

The conversion of the elastic acceleration spectrum in the spectral domain 
requires the deriving of the spectral displacement (Sde) from the period (T) 
and the spectral acceleration (Sae): 
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The intersection between CS and DD is called Performance Point (PP); it 
represents the behaviour of the structure under the design earthquake scenario 
and is used to check the seismic performance at maximum displacement. In 
fact, its coordinates give the maximum expected spectral acceleration and 
displacement in the SDOF system, from which the base shear and 
displacement of the MDOF system can be derived by using (5.33) and (5.34). 
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The definition of the inelastic response spectrum requires to represent the 
damping due to hysteresis and damage; the inelastic SDOF system is 
described by means of an equivalent bilinear, often elastoplastic, law. When 
the post-yield stiffness is equal to zero (EP system) the influence of moderate 
strain hardening is assumed to be incorporated in the demand spectrum 
(Fajfar, 1999). 

Within the N2 Method an equivalent elastic-perfectly plastic SDOF 
system is defined, and a ductility factor  is obtained. It is equal to the ratio 
between the ultimate displacement du and the yielding displacement dy: 

 
y

u
d
d

  (5.37) 

To account for the hysteretic dissipation of ductile structures, a reduction 
factor Ris also derived according to (5.38), in which TC (often called 
characteristic period of the ground motion) is the transition period where the 
constant acceleration segment of the spectrum ends. R depends on the 
natural period of the system, on its ductility, on its hysteretic response and 
related damping, as well as on the characteristics of the ground motion. 
Several procedures have been proposed to calibrate R, mainly based on 
parametric investigations on different groups of records, statistical studies, 
empirical observations and some validation tests using non-linear time-
history analyses (Vidic et al., 1994), always referring to buildings, and never 
to bridges nor, let alone, to masonry arch bridges.  
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The inelastic demand spectrum is obtained through (5.39). 
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Since R= for T≥TC the principle of equal displacement between elastic 
and inelastic SODF systems is assumed for high periods. Diversely from 
(Vidic et al., 1994) and (Fajfar, 1999; 2000) in which the elastoplastic 
equivalent system is defined once and for all on the base of the whole 
capacity curve, it seems to be preferable to build it for all the displacement 
values in the range of interest, so that the effectively required ductility under 
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a displacement condition, rather than the ultimate one, is considered. 
Moreover, the identification of a ultimate displacement resulting from a 
push-over analysis should represent the achievement of a ultimate (failure) 
condition, which is not always obvious, and, of course, cannot depend on the 
maximum displacement value before the loss of convergence in the 
numerical simulation.  

Concerning this, it has to be added that the capacity curves of large-span 
masonry bridges may display so high displacements that the performance 
point is in the ascending branch. Thus, from the one hand, a bilinear system 
related to the ultimate displacement would lead to an overestimate of the 
effective inelastic demand; on the other hand, this also seems to indicate that 
the degrading behaviour of the push-over response does not significantly 
affect the outcome of the seismic assessment, being out of the displacement 
range of interest.  

The equivalency between MDOF and SDOF consists in the same 
underlying area (energetic equivalence), the same ultimate displacement and 
the same stiffness of the push-over curve. Of course, other criteria can be 
chosen, such as the minimization of the standard deviation between capacity 
spectrum and bilinear law or an elastic period of the equivalent SDOF system 
(T*) equal to the period coming from modal analysis; T* is obtained 
according to (5.40) in which dy* and fy* are the coordinates of the yielding 
point in the spectral domain. 
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The Capacity Spectrum Method (Freeman et al., 1975; Freeman, 1998) is 
substantially analogous to the N2 Method, but assumes different criteria for 
the definition of the inelastic spectrum. In fact, the inelastic demand is 
represented by an over-damped elastic response spectrum in which an 
equivalent viscous damping ratio >5% is computed by considering the 
effectively dissipated energy in the cyclic response (Chopra, 2006), which is 
in turn estimated by means of an equivalent bi-linear system and some 
coefficients experimentally calibrated to evaluate the hysteretic dissipation.  

5.4.5. Non-linear dynamic analysis 

The most accurate way to evaluate the seismic response of a structure is 
represented by non-linear dynamic analyses; it allows to account for the 
dissipative phenomena, damage accumulation and evolution, differential 
earthquake motion at the constraints (multi-support excitation), without any 
strong basic assumed simplifications. On the other hand, it needs high 
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computational effort and calculus duration, an adequate representation in the 
model of material cyclic behaviour and of dissipative phenomena (damping), 
a complex pre-processing phase for choice and manipulation of signals, a 
careful choice of output variables to record and, finally, a delicate post-
processing procedure for elaborating them. 

 
Generally, the signals adopted for the seismic structural analysis are of 

three types: artificial waveforms, simulated accelerograms and natural 
records. Several database of natural recorded signals are available on internet 
(COSMOS, PEER, ISESD, ESD, USGS, ITACA) from which acceleration 
time-histories can be downloaded together with all the information about the 
corresponding seismic event. The records to be used in the analysis must be 
chosen so as to be representative of the ground motion at the site and must be 
recorded at a consistent source-site distance (Bommer and Acevedo, 2004). 
Different criteria can be used for the selection of the records, based on 
geophysical parameters (earthquake magnitude, source-to-site distance, site 
classification, fault characteristics) or on the matching to the elastic response 
spectrum (as many seismic design codes often require).  

As regards the number of records to be used, it should be chosen to be 
efficient and sufficient: small enough to provide good results (low scatter in 
both the demand and the capacity estimates) but at the same time large 
enough to provide a complete characterization of the response (Vamvatsikos 
and Cornell, 2004).  

In the selection process, the accelerograms can be scaled to achieve a 
better representation of the design earthquake scenario, which often means an 
improved match with the target spectrum. Generally, scalar factors can be 
applied to the acceleration and/or time axes of the record to obtain the desired 
PGA and/or duration, respectively; in the former case, the correspondence 
between signal and target spectra can be pursued at a specific period value 
(for example at the fundamental period of the structure) or on average within 
a period window (Bommer and Acevedo, 2004). Such a window has to 
include the fundamental frequencies of the structure, i.e. the ones of the 
modes whose contribution to the overall dynamic response is significant. 
High masonry bridges may display a fundamental mode in the transversal 
plane with high period (>1.5 sec) and participating mass (60÷70%); in this 
case the typically chosen window (0.15÷2.0 sec) may result to be inadequate, 
and a wider one should be fixed having a higher upper limit. 

The issue of scaling the accelerograms to be used in non-linear dynamic 
analyses of structures is quite debated in literature. Sets of scaled signals are 
considered to be independent on the anchoring value of the code spectrum (it 
is easier to find a real record set that is compliant to the code spectrum) and 
to reduce the record-to-record variability in the response (Iervolino et al., 
2008). From a physical point of view, an accelerogram depends on the 
magnitude of the event (ME) and on the distance from the source (RE) in terms 
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of both peak ground acceleration (PGA) and of shape (high magnitude events 
produce seismic waves having a high content at lower frequencies than low 
magnitude events). Scaled signals provide the desired PGA but correspond to 
events that could be significantly far from the design one. For example, a 
severe scenario in which the expected PGA is 0.7g could be represented by 
the record of a weak earthquake with PGA=0.07g that is scaled by a factor 
10. 

The main point is to understand how the scaling produces effects on the 
structural response, i.e. if the non-linear response of a multi-degree-of-
freedom structural system depends on ME and RE beyond its dependence 
through the intensity level. In more formal terms, the issue is to know if the 
non-linear MDOF response is conditionally independent of ME and RE, given 
a spectral acceleration (Shome et al., 1998). If it is, then the selection of the 
set of records is greatly simplified because it can be made within a database 
of any ME and RE; on the contrary, only records corresponding to events with 
magnitude and distance close to the design one can be considered in the 
selection process.  

Even if this issue is still open, recent studies suggest that scaling the 
amplitude of records is allowed provided that not too high scaling factors are 
used (Beyer and Bommer, 2007). Moreover, a linear scaling on the only 
accelerogram axis and the pursuing of the compatibility on average within a 
period interval, and not only on a single period value, seem to be preferable.  

 
In non-linear dynamic analyses, a term representing dissipative 

phenomena is usually included. Damping mechanisms (viscous damping, 
Coulomb friction damping, radiation damping, hysteretic damping) as well as 
damping ratios have been widely discussed by several authors (see, among 
others: Chopra, 2006; Priestley et al., 2007) and the main point on which they 
seem to agree is that this is a very complex issue (especially for multi-degree-
of-freedom systems and for unreinforced masonry structures) since it is 
damage dependent and poor information on it are available in literature.   

Rayleigh damping is a simplified way to take into account the dissipative 
properties of the structure through a viscous term C proportional to the mass 
M and the structure stiffness KS matrices (5.41). 

 sKMC 21   (5.41) 

When hysteretic damping is included in the model (for example through 
the constitutive law assumed for the material), Rayleigh damping represents 
the dissipative effects induced by other phenomena which are not explicitly 
described, such as local inelastic deformations due to inhomogeneous 
distribution of the stresses at the micro-scale that can occur also in a range of 
average macroscopic stresses that are well below the elastic threshold. If the 
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fill soil is not included in the structural model, Rayleigh damping has also to 
describe the dissipative effects produced by its presence. 

Some proposals for the equivalent viscous damping ratio to be used in 
dynamic analyses on masonry structures are made one the base of shaking 
table tests in (Benedetti et al., 1998; Juhásová et al., 2008; Mazzon et al., 
2009; Elmenshawi et al., 2010); it seems that a ratio in the order of 2%10% 
could be reasonable, even if in all these works only walls or small-scale 
building models are considered. Moreover, according to some authors 
(Priestley et al., 2007), higher damping ratios should be used for severe 
earthquake scenarios (ultimate limit state condition), for which strong 
damages are expected, and for prevalence of flexural response, while lower 
values should be assumed when weak events (serviceability limit state 
condition) are of interest and the shear is expected to mainly govern the 
structural response. 

The scalar parameters of the Rayleigh damping 1 and 2 should be 
chosen so as to get a reasonable damping value within the range of 
frequencies in which the spectral content of both the input signal and of the 
structural response is significant. High damping values can be accepted  for 
very low frequencies (<0.2Hz) that are usually reset to zero in the filtering 
process of sampled recorded signals, as well as for very high frequencies 
(>50Hz) that can result from numerical instabilities and, anyway, have 
negligible importance in terms of structural dynamic response.  

Finally, a certain damping allows to contain numerical instabilities and 
thereby can be useful in simulations, provided that, of course, it does not 
affect the result by introducing an error, considering also that the structural 
response may show strong sensitivity to small variations of the damping 
term. 

 
During non-linear dynamic analyses one or more damage measures and/or 

structural state variables have to be monitored; generally, three choices can 
be made to synthetically represent the overall response (and to make 
comparisons with static methods): the maximum displacement of the control 
node and the corresponding (same time instant) resultant base shear; the 
maximum base shear and the corresponding displacement of the control 
node; the maximum displacement and the maximum resultant base shear 
within a time window of a certain amplitude centred in the time instant of 
maximum displacement (Ferracuti et al., 2008). When dealing with 
potentially degrading systems (showing a softening branch in the static load-
displacement curve) the first choice is preferable with respect to the second 
one. The last possibility has instead a uncertain mechanical justification, 
unless it is intended as a way to account for higher modes having a non-
negligible influence on the dynamic response of the MDOF system. 
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One case study is considered in the following section, in which the 
methodologies discussed in this paragraph are applied and some issues 
related to their employment for the seismic assessment of a multi-span bridge 
are underlined. 

5.5. Seismic response of masonry bridges: a 
case study 

The case study of Ronciglione viaduct, illustrated in paragraph 4.4.1 is 
described in this section.  

5.5.1. Dynamic characterization 

In a first step, the dynamic behaviour of Ronciglione Viaduct in the elastic 
range is investigated by a linear 3-D finite element model, in which all 
structural elements can be faithfully represented; the results in terms of 
modal shapes and natural frequencies are compared to those provided by a 
fiber beam model to investigate the capability of a 1-D modelling approach in 
representing the dynamic response of a multi-span arch bridge.  

The 3-D model is made of brick finite elements with 8 nodes (Figure 
5.20); a Young modulus E=750MPa and a self weight =1650kg/m3 are 
assigned to vault brickwork, according to experimental results, while 
E=750MPa, 1500 kg/m3, and E=200MPa, =1500kg/m3 are chosen for pier 
tuff masonry and fill soil, respectively. Sensitivity analyses are performed to 
investigate how the material characteristics influence the structural response, 
revealing a strong dependence on the stiffness of the piers. 
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Figure 5.20. Model of Ronciglione Viaduct with brick elements. 

The first ten modal shapes of Ronciglione Viaduct are represented in 
Figures 5.21−5.30, while periods (T), frequencies (f), participating factors () 
and masses (m) provided by fiber beam-based model are collected in Table 
5.2. The bridge conformation, characterized by high central piers, is such that 
the principal modal shape is in transversal direction and nearly symmetric, 
with all nodal displacements of the same sign and higher for the central spans 
(Figure 5.21); the following three modes in ascending order of frequency are 
again in the transversal plane and present cross-shaped horizontal 
displacements (Figures 5.22−5.24), then also modes #7, #8 and #9 are in the 
transversal plane (Figures 5.27−5.29). The first longitudinal mode is mode #5 
(Figure 5.25) and the following ones are #6 and #10 (Figures 5.26 and 5.30). 
On the whole, modal shapes strongly result from the height of the central 
piers, the stiffness of the second and fifth ones and from the stiffness of the 
arch, which appears high enough to produce an interaction between the 
spans, but not so high to make the piers move always towards the same 
direction. 

As it is seen from Table 5.2, the modes display a significant contribution 
(participating factor and mass) in one only direction, while in the other one 
they do not participate in the dynamic response of the bridge. In particular, 
the fundamental modes are #6 and #1 for longitudinal and transversal planes, 
respectively. Their participating masses are relatively low (37% and 55%), 
similarly to what is found in (Gambarotta et al., 2006), in which the dynamic 
characterization of twenty Italian masonry bridges is presented.  
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3-D model
T=1.48sec

1-D model
T=1.48sec

 
Figure 5.21. Modal shape #1: comparison between models with brick 

elements and fiber beams. 

3-D model
T=1.10sec

1-D model
T=1.02sec  

Figure 5.22. Modal shape #2: comparison between models with brick 
elements and fiber beams. 



 Chapter 5 215 

Stefano De Santis 

3-D model
T=0.92sec

1-D model
T=0.99sec  

Figure 5.23. Modal shape #3: comparison between models with brick 
elements and fiber beams. 

3-D model
T=0.82sec

1-D model
T=0.93sec

 
Figure 5.24. Modal shape #4: comparison between models with brick 

elements and fiber beams. 
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3-D model
T=0.75sec

1-D model
T=0.92sec

 
Figure 5.25. Modal shape #5: comparison between models with brick 

elements and fiber beams. 

3-D model
T=0.68sec

1-D model
T=0.85sec

 
Figure 5.26. Modal shape #6: comparison between models with brick 

elements and fiber beams. 
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3-D model
T=0.67sec

1-D model
T=0.79sec  

Figure 5.27. Modal shape #7: comparison between models with brick 
elements and fiber beams. 

3-D model
T=0.61sec

1-D model
T=0.75sec  

Figure 5.28. Modal shape #8: comparison between models with brick 
elements and fiber beams. 

3-D model
T=0.59sec

1-D model
T=0.74sec

 
Figure 5.29. Modal shape #9: comparison between models with brick 

elements and fiber beams. 
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3-D model
T=0.57sec

1-D model
T=0.61sec

 
Figure 5.30. Modal shape #10: comparison between models with brick 

elements and fiber beams. 

Mode Period  
T [sec] 

Frequency 
f [Hz] 

Longitudinal Plane Transversal Plane 
Participating  

factor  
Participating  

mass m 
Participating  

factor  
Participating  

mass m 
1 1.477 0.676  0  0 1.73  55%  
2 1.015 0.984  0  0  0.01  2% 
3 0.99 1.01  0  0  0.31  15% 
4 0.929 1.075  0  0  0.04  1.5% 
5 0.922 1.083 0.22 2.6%   0  0 
6 0.848 1.179  1.44 37%   0  0 
7 0.795 1.257  0  0  0.03  0.8% 
8 0.753 1.327  0  0  0.005  0.4% 
9 0.749 1.334  0  0  0.12  4% 
10 0.614 1.628  0.15 6%   0  0 

Table 5.2. Modal analysis: periods and frequencies, participating factors and 
masses of the first ten modes (fiber beam model). 

In the 1-D model, vaults and piers are described by using fiber beam 
elements, while for backing and abutments truss elements with fiber cross-
section are used, as it is illustrated in the previous chapter. When the dynamic 
behaviour is under investigation, the representation of spandrels and fill in 
terms of mass results to be essential, as well as the contribution of the former 
ones in terms of in-plane stiffness (Fanning et al., 2001; Brencich and Sabia, 
2007). Therefore, the mass of soil and spandrels is represented through point-
masses connected by rigid links to the underlying vaults (Figure 5.31); the 
stiffening contribution of the spandrel walls (and, indirectly, the interaction 
between adjacent volumes of fill soil) is represented by horizontal and 
diagonal truss elements (Figure 5.32). The stiffness of the diagonal truss 
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elements is reduced to 50% in the modal analysis, since they only work as 
struts and not as ties. 

Fiber beam element

Rigid link

 
Figure 5.31. Fiber beam model: detail of the representation of fill soil. 

Spandrel walls
(truss elements)

Backfill
(truss elements)

Pier
(non-linear beam elements)

Rigid link

Barrel vault
(non-linear beam elements)

Spandrel walls
(stif f ening truss elements)

 
Figure 5.32. Fiber beam model: detail of the representation of backing and 

spandrel walls by means of non-linear truss elements. 

The cross-section of vaults and piers is discretized into 100100 fibers, 
while the one of truss elements representing backings, spandrels and 
abutments is divided into 3030 fibers. Finally, a shear flexibility is assumed 
for the cross-section of piers in both the principal directions, as well as a 
torsion flexibility. 

Within the dynamic characterization phase, the same mechanical 
properties adopted for the 3-D model are assigned to the fibers of the 1-D 
one. A satisfactory agreement is found in terms of both periods and modal 
shapes (Figures 5.21−5.30), especially for the modes (#1 and #6) considered 
to play a significant role in the seismic response; at the same time, a certain 
overestimate of the natural periods is observed for some higher modes. 
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5.5.2. Push-over analyses 

Push-over analyses are carried out under in-plane and out-of-plane loads 
with different distributions: one (#1) is proportional to nodal masses, another 
one (#2) is proportional to nodal masses times horizontal displacements of 
longitudinal and transversal principal modes (mode #1 and mode #6) for in-
plane and out-of-plane forces, respectively. Finally, a third distribution (#3) 
is also adopted in longitudinal direction, with horizontal and vertical loads 
proportional to nodal masses and displacements of mode #6. Forces are 
applied to nodes of arches and piers, as well as to those representing fill soil 
and spandrels, within an incremental quasi-static analysis which follows the 
application of the entire self-weight. 

Material properties are described by means of the uniaxial constitutive 
model Masonry01 whose parameters are determined according to Table 3.3. 
Such a relation is assigned to the fibers of the cross-section of beam elements 
representing vaults and piers, and to the truss elements describing backings, 
spandrels and abutments. 

Analyses are carried out under displacement control, adopting an energy 
increment-based convergence criterion and a linear geometric transformation 
rule. Wide load cycles are performed, with increasing positive and negative 
peak displacements. Resulting capacity curves are plotted in Figures 5.33 and 
5.34, in which the control displacement (dk) is on the horizontal axis and the 
normalized base shear on the vertical one. The control displacement is the 
horizontal component of displacement of the springer and of the crown of the 
central span for in-plane and out-of-plane analyses, respectively; it is 
measured, obviously, in the same direction in which loads are applied. Such a 
choice seems to be reasonable on the base of modal shapes found in the 
dynamic characterization, being these nodes the ones showing the largest 
displacements in eigenvectors #6 (in-plane analysis) and #1 (out-of-plane 
analysis). The normalized base shear is the resultant base shear Vb divided by 
the bridge self-weight (W). 

Lower resistance and stiffness are found towards transversal forces and 
when a distribution proportional to the product of nodal masses and modal 
displacements (distribution #2) is used, since its resultant is applied in a 
higher position and produces a stronger bending moment at the base of the 
piers. Under in-plane loads, distribution #3 provides even lower stiffness and 
resistance. The mismatch in stiffness of the different capacity curves in both 
directions results from the different displacement fields produced by the 
imposed loads. If compared to the modal shapes, the closest deformed 
configuration is provided by load distribution #3 and #2 for longitudinal and 
transversal planes, respectively. 

Similarly to the case of the single arch (Figure 5.13), the shape of all 
push-over curves is characterized by extremely narrow cycles, independently 
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of the load distribution nor of the direction of analysis, indicating that low 
hysteretic dissipation is expected during earthquakes.  
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Figure 5.33. Capacity curves corresponding to different load distributions for 

in-plane push-over analyses. 
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Figure 5.34. Capacity curves corresponding to different load distributions for 

out-of-plane push-over analyses. 

Under in-plane loads, the very first branch of the capacity curves shows a 
low slope immediately increasing after the exceeding of a displacement of 
about 5cm; this has to be attributed to the progressive collaboration of the 
spandrel walls, which result strongly stressed under horizontal forces but do 
not collaborate under the self-weight. Considering the settlement process 
occurred on the structural elements of the bridge during its life, such a 
response does not reliably represent the actual state of the construction. The 
global stiffness provided by capacity curves has to be computed by 
neglecting the initial branch and considering instead the following linear 
phase.  

Aiming at investigating the sensitivity to the variation of the mechanical 
properties of brickwork (compressive strength fcp and ductility ) non-linear 
static analyses are carried out in transversal direction with load distribution 
#2. An increase of compressive strength results in a capacity curve with 
higher resistance and stiffness, while the higher is the ductility the higher is 
the displacement capacity, with a low corresponding strength variation 
(Figure 5.35). 
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Figure 5.35. Sensitivity analyses in the transversal plane under load 
distribution #2: dependence of the capacity curve on the compressive strength 

(left) and on the ductility (right) of the material. 

5.5.3. Non-linear incremental dynamic analyses (IDA) under 
natural accelerograms 

The evaluation of the response of Ronciglione Viaduct under earthquake 
motion is made by means of incremental dynamic analysis (IDA) procedure 
(Vamvatsikos and Cornell, 2002). Such a method is becoming more and 
more widely adopted to estimate the response of structures under seismic 
loads. It consists in performing repeated non-linear dynamic analyses under 
accelerograms with increasing intensity level (IL), which is a monotonic 
scalable ground motion severity measure. The peak ground acceleration 
(PGA) is assumed as the intensity level measure and ranges from 0.2 to 2.0 
(full application corresponds to IL=1.0). 

Two different limit states are considered: the Ultimate Limit State (ULS) 
and the Damage Limit State (DLS); they are characterized by a probability of 
exceedence (p) equal to 10% and 63% respectively in the reference period 
VR. The latter is defined as the product of the nominal life VN and a 
coefficient CU accounting for the functional type of the structure (i.e. its 
importance in case of seismic event). VN=50 years and CU=1.5 are assumed 
herein, resulting in a reference period VR of 75 years. Return periods TR of the 
considered events are then obtained by expression (5.42) and result to be 
equal to 712 years and 75 years for ULS and DLS, respectively.  

  p


1ln
R

R
V

T  (5.42) 
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The response spectra of the horizontal acceleration provided by Italian 
code (Nuove norme tecniche per le costruzioni, 2008) for the two considered 
limit states are represented in Figure 5.36. The initial and the maximum 
spectral acceleration values are 0.12g and 0.29g for ULS, and 0.07g and 
0.15g for DLS. 
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Figure 5.36. Elastic response spectrum of the horizontal component of the 
acceleration for ULS and DLS limit states provided by the code (Nuove 
norme tecniche per le costruzioni, 2008) for Ronciglione Viaduct site. 

For the selection of signals software Rexel (Iervolino et al., 2009a) is 
used. The sets of records assumed as input signals are made of 14 
accelerograms (seven events, two components each) selected from European 
Strong Motion Database (ESD); they are chosen and scaled to be compliant 
with target acceleration response spectra, i.e. to achieve a maximum spread 
from target spectra equal to 10% in the 0.152.50sec range; the upper 
bound is chosen on the base of the first period of the bridge (T1=1.48sec).  

A maximum mean scaling factor of 5 and a maximum single scaling 
factor of 10 are chosen to be applied to the acceleration axis; no scaling is 
allowed on the time axis. It has to be noted that the intensity level (IL) is 
applied to the selected signals and has nothing to do with the scaling factor 
used in the record selection.  

The 14 signals are chosen among events having moment magnitude (ME) 
at least equal to 6 (ULS) and 4 (DLS) and distance between the source and 
the recording station at least equal to 20km, to avoid weak events and near 
field registrations. Moreover, only signals recorded on soils having 
characteristics similar to the foundation soil of Ronciglione Viaduct 
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(classified as B according to Eurocode 8: CEN-EN 1998, 2005) are chosen. If 
more compliant sets are found, the one having the lowest dispersion with 
respect to target spectrum is chosen to restrict record-to-record dispersion of 
the structural response (Iervolino et al., 2009b). 

 The selected signals are collected in Tables 5.3 and 5.4 together with the 
events they correspond to, their ME and RE, their PGA in the two directions 
and the corresponding adopted scaling factors. The scaled acceleration time 
histories are plotted in Figures 5.37 and 5.38, for the two considered limit 
states, while their response spectra, the average response spectrum and the 
target spectrum are plotted in Figures 5.39 and 5.40. 

 
Earthquake Date ME 

RE 
[km] 

PGA X 
[m/s2] 

PGA Y 
[m/s2] 

SF 
X 

SF 
Y 

#1 Campano Lucano 23/11/1980 6.9 78 0.27 0.35 3.68 2.85 
#2 Kefallinia (aftershock) 23/03/1983 6.2 65 0.21 0.25 4.73 3.97 
#3 Strofades (aftershock) 18/11/1997 6.0 93 0.10 0.11 9.65 8.86 
#4 Manjil 20/06/1990 7.4 91 1.29 2.04 0.78 0.49 
#5 Tabas 16/09/1978 7.3 68 1.00 0.85 1.01 1.19 
#6 Strofades (aftershock) 18/11/1997 6.0 63 0.42 0.32 2.38 3.15 
#7 Umbria Marche 26/09/1997 6.0 67 0.16 0.18 6.05 5.50 

Average Values 6.54 75 0.49 0.59 4.04 3.72 

Table 5.3. Selected signals for IDA on Ronciglione Viaduct under ULS limit 
state conditions. 

Earthquake Date ME 
RE 

[km] 
PGA X 
[m/s2] 

PGA Y 
[m/s2] 

SF 
X 

SF 
Y 

#1 Aigion (aftershock) 15/06/1995 5.6 34 0.10 0.09 5.35 5.94 
#2 Itea 05/11/1997 5.6 52 0.13 0.11 4.17 4.95 
#3 Kallithea 18/03/1993 5.8 41 0.10 0.10 5.37 5.46 
#4 Izmir 06/11/1992 6.0 63 0.28 0.28 1.95 1.95 
#5 Kyllini 16/10/1988 5.9 51 0.11 0.12 4.99 4.51 
#6 Ano Liosia 07/09/1999 6.0 20 0.85 0.76 0.64 0.72 
#7 Izmit (aftershock) 11/11/1999 5.6 36 0.08 0.19 6.56 2.89 

Average Values 5.78 42 0.23 0.23 4.15 3.77 

Table 5.4. Selected signals for IDA on Ronciglione Viaduct under DLS limit 
state conditions. 
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Figure 5.37. Scaled signals used for Incremental Dynamic Analysis on 

Ronciglione Viaduct under Ultimate Limit State (ULS) conditions. 
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Figure 5.38. Scaled signals used for Incremental Dynamic Analysis on 

Ronciglione Viaduct under Damage Limit State (DLS) conditions. 
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Figure 5.39. Acceleration response spectra of the selected signals, average 
spectrum and target spectrum for Ultimate Limit State (ULS) conditions. 
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Figure 5.40. Acceleration response spectra of the selected signals, average 
spectrum and target spectrum for Damage Limit State (DLS) conditions. 

The values 1=0.2701 and 2=0.0086 are assumed for the scalar 
parameters of Rayleigh damping; the corresponding damping ratio  is given 
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by expression (5.43) as a function of the pulsation  (Chowdhury and 
Dasgupta, 2003) and is equal to 5% for the first (f1=0.676Hz) and the sixth  
(f6=1.179Hz) frequencies and anyway lower than 10% within the frequency 
interval in which the content of both input signal and structural response 
appears significant (Figure 5.41).  

  
2
 

 2
21 





  (5.43) 

The assigned damping ratio makes the comparisons between non-linear 
dynamic analyses and non-linear static analysis-based methods consistent, 
since the elastic spectrum provided by the code basically assumes a viscous 
damping of 5%. For this reason, the same damping constants are assumed for 
both ULS and DLS earthquake scenarios and no lower damping resulting 
from a lower expected damage is adopted for weak events, since it is 
considered to be included in the definition of the elastic spectrum and, 
therefore, in the corresponding set of compliant records.  
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Figure 5.41. Rayleigh damping and Fourier spectrum of accelerogram #2, Y 

component, ULS conditions, and of the structural response (horizontal 
acceleration of the control node under out-of-plane analysis). 

As regards the output variables, the maximum control displacement (dk) 
and the corresponding (same instant) resultant base shear (Vb) are recorded 
for each simulation so as to obtain a set of couples (dk,Vb), useful for the 
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comparison with push-over analyses. The control nodes are the springer and 
the crown of central span for in-plane and out-of-plane analyses, respectively, 
as it is done for non-linear static analyses. For each intensity level (IL) the 
average of displacement and base shear values resulting from the application 
of all the accelerograms are determined, and IDA curve is built 

It is noteworthy that push-over curves are nearly symmetric and no heavy 
directional effect is found in time-step analyses; thus, the comparison is made 
in the only positive semi-plane dk-Vb. 

It is seen from Figures 5.42−5.45 that the points representing the single 
dynamic simulations are widely scattered (especially in transversal direction), 
but average IDA curves retrace with good approximation the capacity curves 
for both longitudinal and transversal analyses, if an adequate horizontal load 
distribution is applied (#3 and #2 for in-plane and out-of-plane analyses, 
respectively). This consideration is confirmed by the comparison between 
capacity curves and whole response curves of dynamic simulations, 
represented in Figures 5.46 and 5.47 for in-plane and out-of-plane analyses 
(two signals and two values of IL are chosen, as an example). A sort of 
macroscopic stiffness can be identified, being similar to push-over stiffness 
under #3 and #2 load distributions. Moreover, the contribution of more than 
one only mode seems to be evident from the shape of the response curves, 
showing wide, and slightly chaotic, cycles. 

In Figures 5.42−5.45 the points on IDA curves relative to IL=1.0 
represent the expected average response of the bridge under the various 
seismic scenarios, and is named Performance Point. 
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Figure 5.42. IDA curve and capacity curves for in-plane analyses and ULS 

conditions. 
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Figure 5.43. IDA curve and capacity curves for in-plane analyses and DLS 

conditions. 
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Figure 5.44. IDA curve and capacity curves for out-of-plane analyses and 

ULS conditions. 
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Figure 5.45. IDA curve and capacity curves for out-of-plane analyses and 

DLS conditions. 
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Figure 5.46. Comparison between push-over and non-linear dynamic analyses 

in longitudinal direction (accelerogram #3, X component). 
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Figure 5.47. Comparison between push-over and non-linear dynamic analyses 

in transversal direction (accelerogram #1, X component). 
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A strong sensitivity to damping is found, as it is seen from Figures 5.48 
and 5.49. In the former, the variation of the control displacement dk is plotted 
towards the equivalent damping ratio , in the wide range going from 1% to 
20%. Such a variation is normalized with respect to the reference value 
=5%. For =1% dk is equal to 110% the reference value, while for =20% it 
reduces to about 55%. 

In the latter plot the time-history of control node displacement is 
represented for three values of  (2%, 5%, 8%). Apart from the reduction in 
maximum displacement, it is seen that a higher damping produces a more 
rapid reduction of the free oscillations after the end of the signal (t=24sec). 
Finally, the three curves display a phase shift after the instant of maximum 
displacement, which tends to vanish after the end of the accelerogram. 

Damping ratio 

M
ax

im
um

D
is

pl
ac

em
en

t
/ 

M
ax

im
um

D
is

pl
ac

em
en

t
at

 
= 

5%

0 0.05 0.1 0.15 0.20.5

0.6

0.7

0.8

0.9

1

1.1

1.2

 
Figure 5.48. Displacement vs. Rayleigh damping ratio (Out-of-plane analysis, 

ULS limit state, accelerogram #1, Y component). 
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Figure 5.49. Time history of the control displacement for different damping 

ratios (Out-of-plane analysis, ULS limit state, accelerogram #1, Y 
component). Duration of the signal: 24 sec. 

5.5.4. Seismic assessment by means of N2 Method 

The feasibility of N2 Method when applied to masonry bridges is 
investigated in this section, with reference to Ronciglione Viaduct case study. 
In-plane and out-of-plane responses are separately analyzed, considering both 
ULS and DLS limit states. The parameters of the equivalent bi-linear SDOF 
systems are collected in Table 5.5, together with the coordinates of the 
Performance Point (PP) provided by non-linear dynamic analyses. 

 
 In-plane analyses Out-of-plane analyses 
 ULS DLS ULS DLS 

d*(PP) 28.6 mm 11.9 mm 50.9 mm 22.1 mm 
f*(PP) 0.077 W 0.031 W 0.089 W 0.038 W 

dy* 36.6 mm 16.1 mm 41.3 mm 18.3 mm 
du* 40.0 mm 17.1 mm 49.5 mm 20.9 mm 
fy* 0.105 W 0.046 W 0.076 W 0.034 W 
 1.09 1.06 1.20 1.15 
 1.44 1.44 1.73 1.73 

Table 5.5. Properties of the bi-linear equivalent systems and Performance 
Point coordinates provided by non-linear dynamic analyses.  

The performance point identified by the N2 procedure is compared to 
non-linear dynamic simulations by taking the average response to each set of 
signals when integrally applied (IL=1.0). A significant overestimate is found 
for in-plane analyses (Figure 5.50), which could be attributed to the relatively 
low participating mass of the sixth mode (chosen as the fundamental one in 
the longitudinal direction), while a slight underestimate results for what 
concerns the out-of-plane response (Figure 5.51). Anyway, Ronciglione 



236  Seismic assessment of masonry bridges 

Roma Tre University - DiS 

Viaduct result to remain in a substantially elastic condition under the 
earthquake scenarios provided by the code for its construction site. This, of 
course, is a preliminary, anything but exhaustive, information to conclude 
that it is safe towards earthquakes.  
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Figure 5.50. Application of the N2 Method to Ronciglione Viaduct: in-plane 
analyses for ULS (left) and DLS (right) limit states and comparison with IDA 

results. 
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Figure 5.51. Application of the N2 Method to Ronciglione Viaduct: out-of-
plane analyses for ULS (left) and DLS (right) limit states and comparison with 

IDA results. 

Finally, an extremely severe seismic scenario (named hereafter severe 
ULS) is considered and the N2 method is applied to investigate its reliability 
when the response of the bridge is significantly non-linear. The assumed 
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elastic spectrum has an initial value of 0.29g and a maximum one equal to 
0.75g. It is represented in Figure 5.52 together with the response spectrum of 
the 14 natural records used in non-linear dynamic analyses and their average 
spectrum. The accelerograms, selected and manipulated as discussed before, 
are collected in Table 5.6 and represented in Figure 5.53. 
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Figure 5.52. Acceleration response spectra of the selected signals, average 

spectrum and target spectrum. 

Earthquake Date ME RE PGA X PGA Y SF SF 
[km] [m/s2] [m/s2] X Y 

#1 Izmit 17/08/1999 7.6 96 1.08 1.12 2.68 2.58 
#2 Adana 27/06/1998 6.3 30 2.16 2.64 1.34 10.90 
#3 Manjil 20/06/1990 7.4 91 1.30 2.05 2.23 1.41 
#4 Manjil 20/06/1990 7.4 81 0.95 0.84 3.04 3.44 
#5 Izmit 17/08/1999 7.6 94 1.76 1.56 1.65 1.86 
#6 Racha (aftershock) 15/06/1991 6 50 0.31 0.35 9.24 8.20 
#7 Izmit 17/08/1999 7.6 39 0.90 1.27 3.22 2.28 

Average Values 7.1 69 1.21 1.40 3.34 4.38 

Table 5.6. Selected signals for non-linear dynamic analyses on Ronciglione 
Viaduct under severe ULS conditions. 
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Figure 5.53. Scaled signals used for the non-linear dynamic analysis on 

Ronciglione Viaduct under severe ULS conditions. 
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 In-plane analyses Out-of-plane analyses 
d*(PP) 90.1 mm 145.1 mm 
f*(PP) 0.183 W 0.131 W 

dy* 58.9 mm 82.7 mm 
du* 118.8 mm 148.0 mm 
fy* 0.168 W  0.153 W 
 2.02 1.79 
 1.44 1.73 

Table 5.7. Properties of the bi-linear equivalent systems and Performance 
Point coordinates provided by non-linear dynamic analyses (severe ULS 

conditions). 

The comparison between N2 method and non-linear dynamic simulations 
is represented in Figure 5.54 for longitudinal and transversal directions, and 
almost the same considerations of the previous case can be made: an 
overestimate (in the order of 15%) of the displacement is found for in-plane 
analyses, while, as regards out-of-plane response a slight underestimate 
(about 10%) has to be noted. 
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Figure 5.54. Application of the N2 Method to Ronciglione Viaduct under 
severe ULS limit state: in-plane (left) out-of-plane (right) analyses and 

comparison with non-linear dynamic analysis results. 
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5.6. Towards a performance-based seismic 
assessment 

The performance-based seismic assessment (PBSA) is a general approach 
consisting in evaluating the performance response of a structure when 
subjected to a given level of seismic hazard. It has become popular in the last 
decades for both assessment of existing constructions and design of new 
ones; in fact, even if buildings conceived according to the most updated 
criteria performed well during strong earthquakes from a life safety 
perspective, their level of damage and the economic loss due to loss of use 
and repair were unexpectedly high. 

Design for seismic resistance has met in the recent past a conceptual 
evolution from strength to performance (which are not considered as 
synonymous any more), so the idea of designing a structure having in mind 
some desired performance goals is not new. Anyway, the PBSA has been 
incorporated only in the most recently issued codes, within procedures based 
on push-over analysis in which the identification of damage states is made in 
terms of displacement thresholds. In a more general view of the PBSA 
framework, the performance level can be expressed in terms of stresses and 
loads, accelerations, displacements and drifts; the latter ones seem to be the 
most significant parameters, since they can be directly related to the level of 
damage (Ghobarah, 2001). 

The PBSA has been mainly conceived and applied for r.c. and steel 
buildings and the scientific literature is extremely poor in application to 
existing masonry bridges. This is also due to the lacking of deep 
experimental information and surveyed data about the seismic capacity of 
this structural typology.  

Clearly, the structural model to be adopted and the analysis to be 
performed for the seismic assessment depend on what phenomenon (damage, 
collapse) and what kind of response (global behaviour of the bridge, local 
response of a particular structural element) is under investigation.  

As already said, the global assessment of a masonry bridge towards 
earthquakes requires the evaluation of the seismic response in both 
longitudinal and transversal directions, in which the structural behaviour may 
display strong differences in terms of damages, failure mechanisms, offered 
safety level. If a modelling approach analogous to the one proposed in this 
Thesis is used, some global collapse mechanisms, mainly referred to vaults 
and piers, can be checked within a PBSA procedure by looking at some 
displacement measures. 

As already discussed in paragraph 5.4.1, the failure of a vault can be 
caused by an excessive relative displacement between the springers (in the 
longitudinal as well as transversal direction) or of the key with respect to the 
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springers, inducing distortions, loss of equilibrium and high compressive 
stresses, sliding between voussoirs. The failure of a pier can instead occur as 
a consequence of a very eccentric load resultant inducing loss of equilibrium 
or crushing of the material (tall piers); high shear stresses produced by 
excessive drifts can also induce sliding or diagonal cracks (squat piers) 
(Resemini, 2003; Rota, 2004). 

Aiming at checking the performance level in reference of these 
mechanisms, some kinematic measures could be considered so as to give a 
synthetic description of the seismic response of a multi-span masonry viaduct 
(Carbone and de Felice, 2007), separately for longitudinal and transversal 
planes: 

 
Longitudinal direction:  

 longitudinal drift of the piers (dL); 
 relative displacement of the vault springers (vL); 

 
Transversal direction: 

 transversal drift of the piers (dT); 
 relative displacement of the vault springers (vT); 
 transversal displacement of the key with respect to the springer 

(kT). 
 
In addition, other parameters should be checked in both directions: 

 partialization of the cross section (pL, pT) of the vaults and of the 
piers, to ensure that collapse mechanisms do not occur; 

 maximum compressive stress (T, L) in the critical sections (the 
ones showing maximum curvature): is has toto be lower than the 
material strength, to ensure that the failure is not induced by the 
crushing of the material.  

 
Several other measures could also be taken as representative of particular 

conditions or requested performance, associated to specific needs or uses of 
the construction under examination. For example, the residual out-of-plane 
rotation of the spandrel walls and the vertical deformation of the span of a 
rail bridge in the longitudinal plane should be checked. The latter appear 
important at least with reference to an immediate use condition since it may 
induce a distortion of the rails and compromise the bridge practicability. 
However, as a general rule, residual, rather that maximum, strains and 
displacements should be considered (Priestley, 2000). 

Four target performance levels should be considered: Serviceability limit 
state (SLS), Damage limit state (DLS), Ultimate limit state (ULS) and 
Collapse limit state (CLS), characterized by different probabilities of 
exceedence (p) in the reference period (VR) equal to 81%, 63%, 10% and 5% 
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respectively. Under these limit states the structure is expected to remain fully 
operational (SLS), operational (DLS), life safe (ULS) and near collapse but 
not collapsed (CLS) respectively. The corresponding expected damage level 
is negligible, minor, moderated to extensive, very severe (Priestley, 2000). 

Adequate threshold values for the response measures should be 
established, aiming at identifying a limited number of inequalities to verify 
within a seismic assessment. This is surely the most difficult step, since a 
wide number of experimental results, surveyed data and numerical 
simulations should be collected and elaborated.  

The result of the assessment has finally to be represented in a capacity-
demand diagram (Figure 5.55) for all the performance measures, which are 
evaluated my means of a push-over based method or non-linear dynamic 
analyses under a set of adequate records. Clearly, the former appears to be 
strongly preferable by professional engineers, because of the lower 
computational effort and time of analysis. 

 
Figure 5.55.  Seismic performance design objectives.  

From (Bertero and Bertero, 2002). 



 Conclusions 243 

Stefano De Santis 

6. Conclusions and future 
developments 

6.1. Conclusions 

The present work provides a contribution to the knowledge of the 
mechanical behaviour of masonry bridges, starting from the material 
properties, derived by means of an experimental campaign, up to the 
structural analysis, for which the use of a modelling approach based on fiber 
beam elements is adopted for load-carrying capability evaluation and seismic 
assessment. 

 
In detail, the main conclusions are herewith summarized: 
 
− The mechanical properties of historic brickwork used in the 

construction of arch bridges are investigated by means of cyclic 
compression tests under centered and eccentric loading. The 
compressive strength results to be between 4.5 and 7 MPa, depending 
on the brick arrangement, and the average stiffness is in the order of 
650 MPa. A substantially linear softening phase and unloading-
reloading cycles showing a negligible stiffness decrease and a low 
hysteretic dissipation are also found. A constitutive relation for 
representing the cyclic response of brickwork under compression has 
been defined and its parameters quantified on the base of experimental 
tests.  
 

− Masonry prisms under eccentric axial load display a substantially plane 
cross-section behaviour, at least until severe and localized damages 
occur. Accordingly, a beam model with fiber cross-section is used to 
simulate the tests and the comparisons demonstrate its reliability in 
representing masonry elements under axial force and bending moment. 
The approach appears suitable for modelling masonry bridges, 
ensuring, at the same time, low computational costs and simplicity in 
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the determination of the parameters. The feasibility in representing the 
structural response of multi-span masonry bridges is demonstrated by 
comparisons with experimental tests and with limit analysis results. 
 

− Structural analyses on existing bridges show that an accurate 
description of the material properties (crushing strength, post-peak 
behaviour) has important effects in terms of load-carrying capability. 
Totally, twelve historic rail bridges with different geometric properties 
are analyzed and two of them are investigated in detail, one having 
shallow arches and squat piers and the other one deep arches and high 
pillars. On the whole, the results indicate a higher load-carrying 
capability for bridges with shallow arches, thick vaults or low 
thickness-to-span ratio, and for bridges made of a single span or having 
squat piers. Analyses for the assessment of the load-carrying capability 
of multi-span masonry bridges under design loads (exercise conditions) 
suggest to consider only the four concentrated forces provided by the 
code for rail traffic, neglecting the distributed load, which may produce 
a load-bearing increase. Among the bridges under study, a significant 
overestimate of the load-carrying capacity, in the order of 35%, is 
found when assuming an unlimited ductility of the material, as in yield 
design methods. 
 

− The dynamic response of a single arch is investigated leading to an 
estimate of the failure condition under impulse base motion that agrees 
with the one provided by the mechanism method. Sensitivity analyses 
reveal a dependence on the slenderness and on the size of the arch, as 
well as on the constitutive assumptions, especially for short impulses 
and high amplitude values. The response to earthquake motion, 
evaluated through non-linear dynamic analyses, leads to similar results 
and the comparison with push-over analyses, carried out under 
different load distributions, show that the one with both horizontal and 
vertical loads proportional to inertial forces provides the best 
agreement. 
 

− The use of current methodologies for the seismic assessment of 
masonry bridges are examined with reference to an existing rail multi-
span viaduct. The comparison with a 3-D finite element model reveals 
a good agreement in terms of natural frequencies and modal shapes, on 
condition that an adequate representation of pier shear deformation and 
spandrel wall stiffening effect is achieved. Cyclic push-over analyses 
under different load distributions, in both longitudinal and transversal 
directions, display moderate hysteretic dissipation and lower resistance 
and stiffness under out-of-plane forces. On the one hand, the 
comparison of push-over with incremental non-linear dynamic 
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analyses (IDA), carried out under sets of 14 natural records, shows a 
good agreement, provided that loads proportional to inertial forces are 
used; a pronounced sensitivity to damping is also found in dynamic 
simulations. On the other hand, the seismic assessment through the N2 
method, as proposed in Eurocode 8 (CEN-EN 1998, 2005) and in 
Italian code (Nuove norme tecniche per le costruzioni, 2008), is not 
completely satisfactory. In the examined case, a slight underestimate of 
the displacement in transversal direction and a significant overestimate 
in longitudinal direction are found. Such a mismatch depends on the 
non-negligible contribution of higher modes, especially for in-plane 
behaviour, and on the difficulty in representing the bridge response by 
means of a bi-linear SDOF system.  

6.2. Future developments 

This works faces some of the most important issues in the structural 
analysis of masonry bridges, bringing to light the main problematic points 
related to these features and motivating numerous areas of continued 
research. Some of the available future developments of the research work 
presented in this Thesis are herewith indicated: 

 
 One of the main improvements of the proposed modelling approach 

is represented by a more accurate description of spandrel walls and 
fill soil, whose contribution to the structural response is definitely 
non-negligible. One way could be to use 2-D multi-layered elements 
to describe, separately, walls and soil, treated as equivalent 
homogenized continua, similarly to what is proposed in (Cavicchi 
and Gambarotta, 2005; 2007) in the context of limit analysis.  
 

 As regards the dynamic response of arches under earthquake motion, 
the achieved results should be extended to a wide number of 
geometric configurations and records, also including the vertical 
component of the seismic action. This is one of the research works 
currently under development by the author. 
 

 The achievement of an accurate representation of the seismic 
response of multi-span masonry bridges deserves further 
investigation, which cannot prescind from experimental activities to 
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determine the effective contribution of some structural elements (like 
the spandrel walls) to the overall response, the damping parameters 
to assume in non-linear dynamic analyses and the threshold values 
for the structure state variables that synthetically describe the 
response performance. 
 

 Finally, the methodologies and assessment criteria developed in the 
Thesis should be applied to a wide number of bridges in the 
perspective of defining detailed instructions to be included in guide-
lines addressed to professional engineers. An effort should be made  
in the field of the seismic assessment of masonry bridges on 
performance basis, which is definitely one of the most interesting and 
promising research branches for the next future. 
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